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WHY DO WE NEED HIGH RESOLUTION TEMPERATURE CLIMATOLOGIES? 

WITH THE PRESENT AVAILABILITY OF LONG-TERM STATION DATA WE CAN PRODUCE GRIDDED DATA 
SETS EXPRESSED IN TERMS OF ANOMALIES. 
THESE PRODUCTS ARE VERY USEFUL TO STUDY CLIMATE VARIABILITY AND CHANGES OVER THE 
PAST……. 

TEMPERATURE TREND SINCE 1861 

TEMPERATURE TREND SINCE 1901 

TEMPERATURE TREND SINCE 1961 

LATEST MONTH ANOMALY 

ESTABLISHMENT OF THE FIRST 
NETWORK OF OBSERVATIONS 
(ACCADEMIA DEL CIMENTO) 

INVENTION OF SOME OF THE MOST 
IMPORTANT METEOROLOGICAL 
INSTRUMENTS (THERMOMETER, 

BAROMETER). 

SIX STATIONS HAVE BEEN ACTIVE SINCE THE EIGHTEENTH CENTURY 
(BOLOGNA, MILAN, ROME, PADUA, PALERMO AND TURIN) AND OTHER 15 
STATIONS WHERE OBSERVATIONS STARTED IN THE FIRST HALF OF THE 

NINETEENTH CENTURY (AOSTA, FLORENCE, GENOA, IVREA, 
LOCOROTONDO, MANTUA, NAPLES, PARMA, PAVIA, PERUGIA, TRENTO, 

TRIESTE, UDINE, URBINO AND VENICE). 

ITALY HAD A VERY IMPORTANT ROLE IN THE DEVELOPMENT OF METEOROLOGICAL OBSERVATIONS 
AND ACCUMULATED A HUGE HERITAGE OF DATA DURING THE PAST CENTURIES 



…HOWEVER, ROUGH RESOLUTION DATA EXPRESSED AS ANOMALIES CANNOT 
ANSWER TO SPECIFIC QUESTIONS RELEVANT FOR CLIMATE IMPACT-RELATED 
STUDIES AND FOR MANY APPLICATIONS. 

How can I get the climate information (e.g. a monthly temperature series in absolute 
values) relative to a remote place where a meteorological station is not available? 

WHY DO WE NEED HIGH RESOLUTION TEMPERATURE CLIMATOLOGIES? 

100 km 

10 km 

1 km 



HOW TO CONSTRUCT HIGH RESOLUTION TEMPERATURE SERIES IN ABSOLUTE VALUES 

We can describe the spatio-temporal structure of the climate signal over a given area by the 
superimposition of two fields: the climatic normals over a given reference period (i.e. the 

climatologies) and the departures from them (i.e. the anomalies). 
(Mitchell and Jones, 2005. Int J Clim, 25, 693-712) 

+ 

The two fields can be reconstructed in a completely independent way and can be 
based on completely different databases. 

From the superimposition of climatology and anomaly fields we get temperature 
series in absolute values at 1kmX1km spatial resolution. 

Climatologies are basically linked to the geographic features of 
the territory and they can manifest remarkable spatial 
gradients. 

Very high number of station 20-30 years long needed to evaluate 
the complex orography influences on temperature gradients. 

Anomalies are linked to climate variability and change and they 
are generally characterized by rather low spatial gradients.  

Sparse but at least 50-100y long station data needed to 
evaluate the time behavior of temperature over the past. 



SPATIAL INTERPOLATION OF ANOMALIES 

An angular weight is also used to take into account 
spatial anisotropy in stations’ location: 
 
 
 
 
 
 
             is the angular separation of stations i and l 
with the vertex of the angle defined at grid point (x,y), 
and                 and               are the radial and vertical 
weights as defined above.  

A radial and a vertical gaussian weighting functions with the following form are used: 

i runs along the stations 

         is the horizontal (vertical) distance between the station i and the grid point (x,y) 

        is the horizontal (vertical) distance at which the weight is equal to 0.5. 
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SPATIAL INTERPOLATION OF CLIMATOLOGIES 

TO GET THE CLIMATE NORMALS AT HIGH SPATIAL RESOLUTION (1km2).  

 

WE NEED: 

- AN ADEQUATE DATA SET TO DESCRIBE THE CORRECT SPATIAL 
GRADIENTS AT THE RESOLUTION WE HAVE CHOSEN 

- AN ADEQUATE PROCEDURE TO CAPTURE THE CORRECT 
DEPENDENCE OF THE VARIABLE ON GEOGRAPHICAL PARAMETERS 



THE DATA (FIRST GUESS) 

1484 STATIONS 



THE DATA (FIRST GUESS) 



ADDITIONAL DATA 

30 arcsecdonds Digital Elevation Model  



ADDITIONAL DATA 

Global Land Cover 2000 (GLC 2000) of the Joint Research Centre 



THE INTERPOLATION METHODS 

Temperature decrease with elevation in the troposphere 

FOR THESE REASONS A GLOBAL T vs H RELATIONSHIP IS NOT APPROPRIATE, AND WE MUST TAKE 
INTO ACCOUNT FURTHER IMPROVEMENTS TO A GLOBAL APPROACH, OR CONSIDER A LOCAL 
ESTIMATION OF THE LAPSE RATE. 

However the lapse rate is locally different depending on 
various factors: 
- Total solar radiation received (i.e. slope orientation and 
steepness) 
- Sea mitigating effect 
- Pool air cooling (i.e. temperature inversion effect) 



THE INTERPOLATION METHODS 

THREE DIFFERENT METHODS TO FACE THIS PROBLEM: 
 
- Multi Linear Regression with Local Improvements (MLRLI) 
 
- Regression Kriging (RK) 
 
- Local Weighted Linear Regression of Temperature versus Elevation (LWLR) 





MULTI LINEAR REGRESSION WITH LOCAL IMPROVEMENTS (MLRLI) 

The first step of this method consists in applying, for each month, a Multi Linear 
Regression (MLR) of temperature versus elevation (h), latitude (ϕ) and longitude (λ) 
to the entire station normal data set. 

 

 

The monthly residuals (ε) from the MLR are then subjected to further analyses aimed at 
identifying the most significant relations with additional geographical and physiographical 
variables. 

Step by step, improvement terms are added to the MLR equation and after each step 
temperature residuals from this new equation are considered. 

The final result is an equation expressing temperature as a function of the various 
variables F(h, λ, ϕ, dsea,....). 

This equation can be finally applied to each grid-cell of a DEM to construct, for each 
month, a high-resolution temperature climatology. 

φλφλφλ ⋅+⋅+⋅+== 3210 ),(),( mmhmmTT



MLRLI – IMPROVEMENT TERMS 

The effects producing relevant improvements to the temperature estimation are: 

i)  Sea effect 

ii)  Lake effect 

iii)  Po Plain Continentality Effect 

iv)  Slope orientation effect for both the non-smoothed and the smoothed DEM 

v)  Summit/Valley Effect 

vi)  Urban Heat Island Effect 



MLRLI – SEA AND LAKE EFFECTS 

The sea and lake effects account for the sea and, to a less extent, lake water mitigation effect. 

According to the analysis of scatter plots of temperature residuals versus dsea, the sea effect was 
modelled by attributing to the grid-cells with dsea ≤ 1.3 km  the average residual (       ) of the 
corresponding stations having dsea ≤ 1.3 km (excluding the Po Plain stations). 

It was also imposed that this effect vanishes when dsea≥15 km. 

This was obtained by setting: 

 

 

 

 

 

 

 

 

The lake effect is similar to, but less prominent than, the sea effect and it was taken into account 
using a similar approach. In this case, however, the number of stations was too small to study the 
decrease of the effect with the distance from the lake (dlake); for this reason we attributed to the 
grid-cells with dlake ≤ 1.3 km the average residual of the corresponding non Po Plain stations within 
this distance from the lakes and half of this value to grid-cells with 1.3 ≤ dlake ≤ 2.6 (km).   
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MLRLI – PO PLAIN CONTINENTALITY EFFECT  

During winter months the Po Plain is affected by a cold-air pool effect causing lower than 
normal temperatures and temperature inversion conditions. 

In summer months, on the contrary, the Po Plain is affected by higher than normal 
temperatures. 

The Po Plain continentality effect was modelled by the average residual (      ) of all Po 
Plain classified-stations not affected by sea and urban effects.  

This was obtained by setting: 

 

 

 

where ppl is a binary variable, set equal to 1 for all Po Plain grid-cells and equal to 0 
otherwise. 
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MLRLI – SLOPE ORIENTATION (FACET) EFFECT  
We estimated a facet effect and a macro-facet effect. 

The former accounts for the effect of exposition to solar radiation, whereas the latter is aimed to 
investigate the effect of large scale topographic barriers (e.g. the Alpine and Apennines ridges) on 
the spatial temperature distribution. 

These effects were modelled binning the station residuals into 36 exposition intervals 10 degrees 
wide and fitting the corresponding values by means of the first two harmonics of a Fourier 
series. 

With these fits we got, for any grid-cell, the facet                   and the macro-facet                    
effects, where fc and Mfc are the facet and macro-facet variables (i.e. the slope orientation in the 
original and smoothed DEM, respectively). 

),( slfcTfacetΔ ),( MslMfcT facetmacro−Δ

facet macro-facet 



This effect was introduced to take into account the cold-air pool effect of the valleys and the higher exposition 
to solar radiation of summits and ridges. 

The summit/valley effect was modelled considering a new variable sv (the summit-valley variable) defined, for 
each point (λ,ϕ), as the fraction of the 120 surrounding points (i.e. the grid-points belonging to a 11x11-cell box 
centred on the grid-point under examination) that satisfy the condition h(λ, ϕ) - h(λ+i•Δλ, ϕ +j•Δ ϕ) > 50 m (with h 
indicating the grid-point elevation and i and j running from -5 to +5 grid-steps).  

Valleys tend to present sv values which are very close to 0, whereas areas on mountain ridges tend to have sv 
values close to 1. 

The effect was modelled according to: 

 

 

were a0 (b0) and a1 (b1) are the coefficients of the linear fit between the station residuals  and sv for sv < 0.25 (> 
0.75),                is the average of the residuals of the stations with 0.25 < sv < 0.75 and sva and svb are the values 
of sv in which the first and last interpolating lines cross the line 

MLRLI – SUMMIT/VALLEY EFFECT 
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MLRLI – URBAN HEAT ISLAND EFFECT  

Urban heat island effect causes higher temperature if compared to rural locations. 

This effect was modelled simply by averaging the residuals of the urban-classified 
stations (     ). 

 

 

 

where lc is a land-cover variable obtained from the GLC2000 land cover grid. 
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MLRLI – THE FINAL MODEL 

Once all the above effects have been included in the model, the final result is an 
equation which estimates the temperature normal of each grid-cell as a function of the 
previous variables.  

 

 

 

 

where the only independent variables are λ and ϕ, whereas all other variables are 
obtained from them by means of the GTOPO30 DEM and the GLG2000 land cover grid. 
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REGRESSION KRIGING 

An alternative approach to the step-wise local improvements to the MLR estimations of 
temperature normals is to consider, for each grid-cell, a distance weighted average of 
the station residuals, with weights calculated by means of a kriging-based approach. 

The MLR residual (ε) of each grid-point (λ,ϕ) is estimated by  

 

 

 

where k is the vector of the kriging weights (ki) for the grid-point (λ,ϕ), ε is the vector of 
station residuals and n is the number of stations. 
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REGRESSION KRIGING 
The first step consists in the definition of the variogram that describes the spatial covariance of the station data. 
The variogram was determined by i) considering all station pairs within 300 km and clustering them according to 
station distance, binned into 10 km intervals; ii) calculating, for each distance interval, the semivariance of the 
differences of temperature residuals of all station pairs within the interval; iii) fitting semivariance versus distance 
by means of a chosen theoretical variogram. 

The exponential variogram turned out to be the most suitable for our application 
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JANUARY 
It assumes that semivariance 
tends to C0 (the nugget 
parameter) for r→0, which 
means that spatial coherence 
cannot completely explain 
station temperature residuals. 
As r increases, the 
semivariance tends to C0+C1 
(the sill parameter), which 
means that for large distances 
(e.g. r > 3R) there is no more 
spatial coherence between 
station temperature residuals. 

The range parameter (R) was 
defined as 1/3 of the minimum 
distance with semivariance 
equal to at least 95 % of the 
average semivariance of the 
intervals from that with 
maximum semivariance to the 
last within 300 km. 

R ranges from 25 km in the 
period December-February to 
45-50 km in the period May-
October.  

This fit was performed using a weighted linear interpolation of γ versus (1-e-r/R), with weights given 
by the ratios between the number of station pairs within each distance interval and the 
corresponding average distance 

C0 ranges from about 0.4 (°C2) in the period March-July to about 0.8 (° C2) in the period December-January. C1 ranges from about 
0.3-0.5 (° C2) in the periods March-May and September-October to about 1.5-1.6 (° C2)  in the period December-January.  



REGRESSION KRIGING 

The theoretical variogram was then used to obtain the covariance (C) versus the 
distance (C(r)= C1⋅e-r/R) and the covariance matrix C, expressing the covariance of any 
pair of stations. . 

The vector of kriging weights (k) for the grid-point (λ,ϕ) was then obtained as: 

k(λ,φ) = C-1⋅c0(λ,φ) 

 

where c0(λ,φ) is the vector expressing the covariances of the grid-cell (λ,φ) with all the 
station positions estimated from C(r)= C1⋅e-r/R. 

 

The temperature of each grid-cell is therefore estimated by RK as: 

εkT ⋅+⋅+⋅+⋅+= ),(),( 3210 φλφλφλ mmhmmT





LOCAL WEIGHTED LINEAR REGRESSION – LWLR 

THE MODEL IS SIMILAR TO PRISM (Parameter-elevation regression on 
independent slopes model) ALREADY USED FOR U.S. TEMPERATURE AND 

PRECIPITATION (Daly et al., 1994) AND FOR PRECIPITATION IN THE 
ALPINE REGION (Frei and Schär, 1998). 

 

 

 

 

 

LOCAL PARAMETER vs ELEVATION WEIGHTED LINEAR REGRESSION 
(LWLR) 

 

 

Daly C, Neilson RP, Philipps DL. 1994. Journal of Applied Meteorology, 33: 140–158 

Frei C., Schär C. 1998. International Journal of climatology, 18: 873-900. 



WHY THIS MODEL? 

Temperature decrease with elevation in the 
troposphere, however the lapse rate is locally 
different depending on various factors 

January near-surface temperature lapse rate (K/km) 

Mean annual temperature 



RADIAL DISTANCE 

ELEVATION 

LWLR – THE WEIGHTING FACTORS 

SLOPE STEEPNESS 

SLOPE ORIENTATION CROSSING DISTANCE 
FROM THE SEA 

(HORIZONTAL DISTANCE + 10X(SUM OF 
VERTICAL STEPS)) 
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LWLR – THE WEIGHTING FACTORS 

CROSSING DISTANCE FROM THE SEA 
HORIZONTAL DISTANCE + 10X(SUM OF VERTICAL STEPS) 

~ 70 km 

~140 km 

km 

TWO POINTS AT THE SAME HORIZONTAL DISTANCE FROM THE SEE CAN 
PRESENT SIGNIFICSNTLY DIFFERENT CROSSING DISTANCES 



LWLR – THE WEIGHTING FACTORS 
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Here var is the specific geographical variable which is being considered,       is the absolute value of 
the difference between the value of  this variable at the grid-cell point (λ,φ) and that at the i-th station 
location, and cvar is a coefficient which regulates the decrease of the weighting function with 
increasing   
 
 
 
 
 
The selection of the most appropriate       values to be used in the weighting factors was performed 
iteratively, for each month of the year, by searching for the value that gives, for any variable, the 
lowest possible error at station locations 
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LWLR –WEIGHTING FACTOR OPTIMIZATION 

We vary the decay coefficient searching for the minimum RMSE 
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RADIAL WEIGHT OPTIMIZATION 

DECEMBER 

MAY 



LWLR – THE IMPORTANCE OF WEIGHTING FACTORS 

WITHOUT WEIGHTS 



LWLR – THE IMPORTANCE OF WEIGHTING FACTORS 

WITH WEIGHTS 



LWLR – THE IMPORTANCE OF WEIGHTING FACTORS 





ERROR INTERCOMPARISON 

  MLRLI RK LWLR 

  BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE 

1 0.04 1.02 1.29 0.00 0.84 1.09 -0.04 0.77 1.01 

2 0.01 0.82 1.05 0.00 0.73 0.94 -0.04 0.69 0.90 

3 -0.02 0.70 0.89 -0.01 0.61 0.79 -0.03 0.60 0.78 

4 -0.04 0.70 0.86 -0.01 0.59 0.75 -0.03 0.58 0.74 

5 -0.04 0.70 0.86 -0.01 0.61 0.76 -0.02 0.58 0.74 

6 -0.05 0.76 0.94 -0.01 0.64 0.81 -0.01 0.62 0.79 

7 -0.05 0.83 1.03 -0.01 0.69 0.88 -0.02 0.66 0.85 

8 -0.05 0.80 0.99 -0.01 0.67 0.85 -0.02 0.65 0.84 

9 -0.03 0.71 0.89 -0.01 0.62 0.80 -0.02 0.62 0.79 

10 -0.01 0.72 0.92 -0.01 0.65 0.83 -0.02 0.63 0.81 

11 0.01 0.81 1.03 0.00 0.71 0.90 -0.03 0.67 0.86 

12 0.03 1.02 1.31 0.00 0.86 1.11 -0.04 0.78 1.03 

MEAN -0.02 0.799 1.005 -0.01 0.685 0.876 -0.03 0.654 0.845 
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LEAVE-ONE-OUT CROSS-VALIDATION TECHNIQUE 



ERROR INTERCOMPARISON – LATITUDINAL DISTRIBUTION OF BIASES 
January and July box-plots of the errors of the three methods, clustering the stations within 1 degree latitude 

belts. 

The boxes range from the lowest quartile to the highest one and are centred on the median; whiskers represent 
the minimum and the maximum errors. 

All stations are considered here 



ERROR INTERCOMPARISON – LATITUDINAL DISTRIBUTION OF BIASES 
January and July box-plots of the errors of the three methods, clustering the stations within 1 degree latitude 

belts. 

The boxes range from the lowest quartile to the highest one and are centred on the median; whiskers represent 
the minimum and the maximum errors. 

Stations with an elevation above 800 m a.s.l. only 



ERROR INTERCOMPARISON – NORTHERN ITALY AND HIGH ELEVATION 

Monthly box-plot of the errors of the three methods from stations with latitude < 40˚N and elevation > 800m. 

The boxes range from the lowest quartile to the highest one and are centred on the median; whiskers represent 
the minimum and the maximum errors. 



ERROR INTERCOMPARISON – COASTS AND PO PLAIN 
Monthly average errors of the three methods from 
a)  coastal stations (stations within the first 1.3 km from the sea) 
b)   Po Plain stations.  

Filled symbols indicate RMSE 
empty symbols indicate BIAS 



THE WINNER IS…. 

MLRLI 
(Multi-Linear Regression 
with Local Improvements) 

LWLR 
(Locasl Weighted Linear 

Regressio) 

RK 
(Regression Kriging) 





TEMPERATURE CLIMATOLOGY 

ANNUAL 



TEMPERATURE CLIMATOLOGY 

JANUARY 



TEMPERATURE CLIMATOLOGY 

JULY 



IMPORTANT ADVANTAFGE OF LWLR: CONFIDENCE INTERVAL 
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LWLR – CONFIDENCE INTERVAL 
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The prediction interval for the grid-point with elevation h is 
 
 
 
where t is the value of a Student distribution with df degrees of freedom corresponding to 
cumulative probability (1-α)/2. 

MEAN SQUARE ERROR 

UNCERTANTY IN THE MEAN VALUE 
ESTIMATION OF THE PREDICTAND 

FROM A FINITE SAMPLE 

UNCERTANTY IN THE 
COEFFICIENT 
ESTIMATION 
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WEIGHTED MEAN ELEVATION OF 
THE REGRESSION DATA SET 

ELEVATION AT WHICH THE 
PARAMETER IS ESTIMATED 

ELEVATION OF THE ITH STATION 

iw WEIGHTS 



CONFIDENCE INTERVAL 

JULY 

JANUARY 

α=0.6827 



IMPROVING DATA AVAILABILITY 

CONFIDENCE INTERVAL REDUCTION 
 
 
 



SYNTHETIC SERIES RECONSTRUCTION 
THE EXAMPLE OF TWO REMOTE SITES 

(LEAVE-ONE-OUT APPROACH) 



SYNTHETIC SERIES RECONSTRUCTION (PASSO PORDOI 2155m) 



SYNTHETIC SERIES RECONSTRUCTION (PASSO PORDOI 2155m) 



SYNTHETIC SERIES RECONSTRUCTION (PLATEAU ROSA’ 3488m) 



SYNTHETIC SERIES RECONSTRUCTION (PLATEAU ROSA’ 3488m) 



1951-1960 



1961-1970 



1971-1980 



1981-1990 



1991-2000 



2001-2010 



FEBRUARY 1956 


