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2.1 Elevation-dependent warming (EDW)  

The average global temperature on Earth has increased of about 1°C since 1880, the time around 

which the measuring stations started to sufficiently cover enough of the planet to have reliable and 

homogeneous temperature records. The global temperature mainly depends on the balance 

between the energy that the planet receives from the Sun and the energy it radiates back to space. 

The latter is significantly affected by the chemical composition of the atmosphere, particularly by 

the amount of greenhouse gases such as water vapor, carbon dioxide, methane, nitrous oxide and 

others which are able to absorb and re-emit part of the terrestrial radiation. The naturally occurring 

concentrations of greenhouse gases, resulting from their exchange between the various 

components of the climate system and from their transformations through the biogeochemical 

cycles, give rise to the natural greenhouse effect, which has basically allowed the average surface 

temperature of the planet to reach values suitable for life. 

Two-thirds of the warming occurred during the last ~150 years has occurred since 1975, at a rate of 

roughly 0.15-0.20°C per decade, in response to the likewise rapid increase of greenhouse gases. 

These are a product of human activities like burning of fossil fuels, vehicular traffic, industrial 

processes, as well as changes in land cover and land use, like deforestation or urbanization. The 

most important greenhouse gases whose concentration has increased in response to human 

activities are carbon dioxide, methane, and nitrous oxide. The increase of greenhouse gas 

concentrations in the atmosphere well above their natural levels has led to an amplification of the 

natural greenhouse effect. Water vapour, the most important natural greenhouse gas on Earth, is 

not directly emitted by human activities but its concentration nevertheless increases in a warmer 

world, which activates a powerful positive feedback enhancing the initial warming. 

It is worth stressing that a one-degree temperature increase, averaged over the globe, is a significant 

amount for at least two reasons. One is that it takes a vast amount of additional heat stored in the 

different Earth system components to warm the oceans, the atmosphere, and the land by that 

much. The other is that such an averaged amount translates into a temperature increase which can 

differ a lot from region to region. Warming is not uniform across the globe indeed. An example is 

provided in Figure 1 showing the January 2018 temperature anomaly, calculated with respect to the 

1951-1980 baseline climatology, from the NASA/GISS/GISTEMP data (Hansen et al., 2010). This 

dataset combines the data acquired by about 6,300 meteorological stations around the world, ship- 

and buoy-based instruments measuring sea surface temperature, and Antarctic research stations. 

Surface warming is generally greater over land than over the oceans because water absorbs and 

releases heat slowly (thermal inertia) and because the heat stored in oceans has to be distributed 

over a mass which is much greater for oceans than for the atmosphere. Moreover, some land areas 

have warmed more (and faster) than others or compared to the globally-averaged temperature 

increase. One generally refers to these areas as “hot-spot” or “sentinel” regions. Hot-spots, not only 



because they undergo greater warming rates than the rest of the globe, but also because of the 

amplified impacts of such warming as well as for the importance which they cover in the global 

climate system. Sentinels, owing to their “ability” of showing early and in an amplified way what the 

effects of a temperature increase would be. These areas include the coldest regions of the World, 

like the Arctic (Serreze and Francis, 2006) and the high-altitude mountain regions (Pepin et al., 

2015).  

 
 
Figure 1. Global map of the January 2018 LOTI (land-ocean temperature index) anomaly relative to the 1951-1980 

January climatology (NASA/GISS/GISTEMP data, www.giss.nasa.gov). 

 

Amplified warming in the Arctic - broadly accepted to result from feedback loops such as the 

snow/ice-albedo feedback (Chapin et al., 2005) – has been referred to as “Arctic Amplification” 

(Serreze and Barry, 2011). High-altitude mountain regions resemble high latitudes in terms of 

climatic conditions - both are cold and dry environments - and the feedback loops which are at play, 

first of all, the ice/snow albedo feedback. On the other hand, the high elevation areas have overall 

more complex climate patterns than the Arctic, for a twofold reason. Because mountains host more 

heterogenous landscapes and are characterized by a variety of micro-climates (Barry, 2008) and 

because they are not limited to one geographical area like the Arctic, but they are sparse in all 

climatic zones of the world for the tropics to the temperate and polar areas.  

Even ignoring external forcing factors impinging upon mountains such as land use/cover changes 

and climate and environmental changes, features like topography, slope, aspect and exposure alone 

would make the temperature and other meteo-climatic variables measured in mountain regions 

characterized by extreme local variability. All this makes it difficult to study climate processes in 

mountains overall, and to understand the mechanisms driving warming rates in high-altitude 

regions when trying to provide a picture able to describe all mountain regions of the World.  

Notwithstanding these intrinsic difficulties and the many factors which concur in limiting our ability 

to determine the rate of warming in mountainous regions (see Sect. 2.2), the analysis of available 

observations, corroborated by climate model results, points toward an amplification of warming 

rates in mountain areas, similar to the Arctic Amplification, a phenomenon which has been referred 

to as “Elevation-Dependent Warming” (EDW). This means that high-mountain environments would 

https://www.giss.nasa.gov/


experience more rapid changes in temperature than their counterparts at lower elevations, or 

compared to globally-averaged temperature increase. 

Elevation-dependent warming has important implications for the mass balance of the high-altitude 

cryosphere leading to consequences on the storage of water in its reservoirs and on future water 

availability. Amplified warming in mountains affect local ecosystems and biodiversity, as well as 

downstream societies.   

In this chapter, we review the definition of EDW, its evidence in observations and in model 

simulations, along with the uncertainties which accompany EDW assessment. We also illustrate the 

mechanisms that have been proposed to account for this phenomenon in the different mountain 

regions of the World. We will discuss all this mostly using a global perspective, but we will provide 

also a special focus on the Alpine region, particularly exploiting the results of one study published 

under the umbrella of the NextData project, which compares the characteristics of EDW in the 

Greater Alpine Region (encompassing the Italian Alps) compared to other two mountain ranges of 

the Northern Hemisphere located in the same latitude band. The open issues, the strategy for future 

research on this topic, and link to existing relevant Initiative are also discussed at the end of the 

chapter.  

 

2.2 Methodological approaches to the study of EDW 

The correct, literal acronym of EDW - elevation-dependent warming - would not imply that the rate 

of warming increases with elevation, but that it depends on elevation. The very important intrinsic 

requirement to deal with EDW would be that there is a statistically significant rate of warming 

(which implies having measurements for a sufficiently long time period, at least 20-30 years) and 

that this rate of warming is not constant with elevation.  

In the majority of EDW studies, the warming rate is quantified using long surface (minimum and 

maximum) temperature time series and extracting the magnitude of the temporal trend. 

Sometimes, as an alternative to the calculation of the trend, the temperature change is considered, 

calculated as the difference between the average of temperature over 20-30 years at the end of the 

time period which is considered and the average of temperature over 20-30 years at the beginning 

of that period, provided that the temperature record is long enough.  

The second step is to assess whether the calculated warming signal (either as trend or change) 

exhibits a dependence on elevation. As commonly done in the literature (e.g. Liu and Chen, 2000; 

Vuille et al., 2003; Pepin and Lundquist, 2008; Liu et al., 2009; Qin et al., 2009; Rangwala et al., 2010; 

Palazzi et al., 2017), this is done by calculating the slope obtained by linear regression of the 

temperature trends (or changes) against the elevation. The regression can be performed both at 

each grid point (for gridded observational datasets, reanalysis products and model data) or location 

(for station data) and using data averaged into elevational bands. The statistical significance of the 

linear slopes is then assessed, which can be done using different methods. 

When the rate of the temperature trend/change is found to exhibit a statistically significant 

relationship with elevation, we can say we are in presence of EDW. This can be defined either for 

the whole globe or regionally or within a single mountain range. In principle, the slope does not 

have to be positive or negative (according to the literal definition of EDW), or necessarily linear 



(which is not often the case, indeed), but it does have to be systematic. Despite these premises, it 

is worth stressing that, in the literature, EDW is more often associated with an increase of warming 

rates with elevation, i.e. the slope describing the relationship between warming rates and elevation 

is positive.  

Some studies showed that the relationship may not be linear instead, but it can exhibit a different 

behavior if evaluated in different elevational bands within a given mountain range (e.g. Palazzi et 

al., 2017, 2019). It is also recommended to deal with EDW in the minimum and maximum 

temperature separately, since different mechanisms driving an amplification of warming rates can 

act differently during daytime and nighttime.  

For clarity, Figure 2 illustrates through an example taken from the model study by Palazzi et al. 

(2017) the common procedure to assess EDW. That study uses an ensemble of the latest generation 

global climate models (GCMs) - the Climate Model Intercomparison Project Phase 5 (CMIP5) GCMs 

- to assess historical and future EDW in one region exhibiting the most outstanding evidence of EDW 

in observations, i.e. the Himalayas-Tibetan Plateau (e.g. Pepin et al., 2015 and references therein). 

Figure 2a shows the topographic map of the investigated area from a high-resolution digital 

elevation model while Figure 2b show how much smoother is the topography of the area seen by 

the ensemble mean of the employed GCMs. Figure 2c shows the change between the period 2071-

2100 (end of the 21st century) and the period 1971-2000 (end of the 20th century) of the minimum 

temperature over the study area, while Figure 2d relates this change to surface elevation. This 

example refers to the winter period (December-January-February, DJF) and the future projections 

are evaluated under the highest emission scenario, RCP8.5 (Riahi et al., 2011), belonging to the 

generation of scenarios (http://sedac.ipcc-data.org/ddc/ar5_scenario_process/RCPs.html) used in 

the 2013 IPCC Assessment Report (AR5, IPCC, 2013). The slope of linear regression (in °C/km) is 

indicated in Figure 2d (both calculated over the entire range of elevations, in red, and from 500 m 

a.s.l. upwards, in blue). A star symbol in parentheses indicates the statistical significance of the 

elevational trend of the minimum temperature change (for details see Palazzi et al., 2017). 

 
Figure 2. Example to illustrate a methodology to assess and quantify EDW (see text for details). Panels a, b and d are 

from Palazzi et al., (2017). 

http://sedac.ipcc-data.org/ddc/ar5_scenario_process/RCPs.html


2.3 Evidence of EDW, with a focus on the Alpine region 

EDW has been studied using in-situ measurements, satellite and reanalysis data as well as model 

simulations. Each kind of data has advantages and limitations, which will be more deeply addressed 

in Sect. 2.4. Most studies conducted so far have been performed using in situ observations of 

minimum and maximum temperatures and climate model simulations, both regional and global 

models, especially when investigating and trying to disentangle the mechanisms driving EDW. 

Observational studies are in less agreement with each other than model simulations. A majority of 

studies based on observations, in fact, suggest that warming is more rapid at higher elevations but 

a number of them also show an opposite behaviour or no relationship or even a more complex 

situation with, e.g., no significant elevational gradient but highest warming rates at intermediate 

elevations (see Table 1 of Pepin et al., 2015 and references therein for details). Most models 

integrate trends over a long time period (typically up to the end of the 21st century) when EDW is 

expected to become more widespread than it has been so far. This makes their picture of historical 

and future EDW more coherent between the different studies employing model simulations than 

between observational studies. Sections 2.3.1 and 2.3.2 discuss the evidence of EDW in observations 

and in model simulations, as from the current literature.   

2.3.1 Evidence of EDW in Observations 

We will discuss in detail in Sect. 2.4 what factors make it difficult to measure and document, using 

different kinds of observing systems, the rate and geographical pattern of warming in mountainous 

regions. Here we focus rather on the results of the main observational studies on EDW in the 

different high-elevation regions of the world, summarizing the literature as a whole and providing a 

focus on the Alpine Region. 

One of the first studies on EDW at the global scale was performed by Diaz and Bradley (1997) who  

analysed the minimum and maximum temperature time series, from 1951 to 1989, at 126    

mountain stations from different regions of the world. They found that trends in minimum 

temperatures generally increased with elevation, while for the maximum temperatures the 

dependence on elevation was less clear with a pronounced warming between 500 and 1000 m, 

globally. The study by Pepin and Lundquist (2008) analysed more stations (1084) and a longer time 

period (1948-2002) focusing on mean annual temperatures. Though they found no significant 

correlation between the magnitude of the trend and the elevation, their analysis showed that the 

strongest warming signal was found around the 0°C isotherm, ascribing this behavior to the 

importance played by the snow/ice-albedo feedback. Many subsequent studies performed at 

regional level corroborated this finding (e.g. Palazzi et al., 2017). Ohmura (2012) analysed from 50 

to 125 years of annual mean temperature  timeseries at 56 stations from 10 mountainous regions 

of the world (the Alps, Kashmir, the Himalayas, Tibet, the Tienshans, the Qilianshans, the Japanese 

Archipelago, the Andes, the North American Cordillera and the Appalachians), finding that 65% of 

the analysed groups showed the largest trend of temperature change at the highest locations, 20% 

at an intermediate altitude between the top and the foot of mountains, and the remaining 15% at 

the lowest elevations. The annual trend was mostly affected by the cold season trend.  



Wang et al. (2014) examined trends in mean annual temperatures and their dependence on 

elevation between 1961 and 2010 at a quite large number of stations around the globe, finding a 

significant amplification of warming rates with elevation in many regions including the Tibetan 

Plateau, the European Alps and the US Rocky Mountains. There are numerous studies conducted at 

the regional level, too, examining the available observations in a particular area/mountain range.  

The most striking observational evidence for EDW is certainly from the Asian mountains. The 

analysis of temperature data from 139 stations on and around the Tibetan Plateau (Yan and Liu 

2014), for example, revealed that warming trend evaluated during the period 1961-2012 

systematically increase with elevation for annual mean temperature, and that warming rates have 

increased in recent decades (Figure 1a of Pepin et al., 2015). Mean minimum temperatures also 

show EDW on an annual basis, as do mean temperatures in autumn and in winter. There was no 

strong elevational effect in other seasons, or for mean maximum temperatures, a result that is 

consistent with findings in other areas. In the Alpine region from the late 19th century until the end 

of the 20th century, temperatures have risen at a rate about twice as large as the northern-

hemispheric average (Auer et al., 2007). Previous studies (Beniston et al., 1997) suggested that 

larger increases in average surface air temperature at higher elevations in the Alps occurred in 

winter and spring compared to other seasons, particularly in the Swiss Alps, mainly associated with 

a strong snow-albedo feedback. Another study focusing on the southern part of the Eastern Alps 

(the Trentino region), however, found that warming rates were larger at lower elevations in the 

period 1975-2010 and attributed this behavior to solar brightening and increased radiative forcing 

at lower elevations (Tudoroiu et al., 2016). In the Colorado Rocky mountains, EDW and its possible 

effects on snowpack characteristics and timing of seasonal melting, forests and vegetation have 

been documented in past studies. One of them (Diaz and Eischeid, 2007), for example, documented 

enhanced warming rates in the period 1987– 2006 with respect to the early 20th century above 

about 2000 m a.s.l. with trends exceeding by about 1°C the average temperature increase in the 

Western US. This and other studies (e.g., Daly et al., 2008; Williams et al., 2010; Clow, 2010; 

Pederson et al., 2011, 2013) assessed EDW in this region using measurements from the high-

elevation Snowpack Telemetry (SNOTEL) network and related gridded climate products, though 

other authors (Oyler et al., 2015) subsequently highlighted possible inhomogeneities and issues 

related to this dataset.  

2.3.2 Evidence of EDW in model simulations  

In spite of their coarse resolution, climate models allow to overcome some of the inadequacies 

inherent in all observing systems, particularly when trying to identify the main EDW mechanisms at 

work. In fact, the output of numerical models includes all the variables which potentially are drivers 

of EDW and which are difficult to measure at the same time in a given location. Moreover, models 

are run over long time periods to simulate both past conditions and future projections. Therefore, 

model simulations have been widely used to assess and understand EDW both in historical and 

future projections.  

The literature reports some EDW studies using regional climate models (RCMs), whose fine scales 

are in principle more suitable to capture the effects of the complex mountain topography on climate 

processes than coarser resolution global climate models (GCMs).  



Here are some examples of studies using RCMs. One paper by Giorgi et al. (1997) used a hydrostatic 

RCM at 50 km over the Alpine region and found enhanced warming rates in response to a doubling 

of CO2 concentration with more pronounced changes at higher elevations particularly in winter and 

spring, mostly associated with a decrease in snowpack. The snow-albedo feedback was also found 

to be the main cause of the enhanced warming occurring in the minimum temperature at higher 

elevations, especially during winter, in the study by Im and Ahn (2011) where the elevational 

dependency of the temperature changes over Korea using a RCM at 20 km resolution was 

investigated. The study by Minder et al. (2018) explored the characteristics of EDW in the Rocky 

Mountains using the Weather Research and Forecasting Model (WRF) simulations at resolutions less 

or equal than 12 km and found very complex patterns of warming with elevation, including cases of 

warming nearly independent of height. They also found that warming is maximum in regions of 

maximum snow loss and albedo reduction, identifying, again, the snow-albedo feedback as the 

primary cause of EDW. At the same time, their simulations showed that EDW depends strongly on 

the adopted RCM configuration including the dependence not only on the spatial resolution but also 

on the land surface model used in the RCM.  

In spite of the finer resolution of RCMs compared to GCMs (on average coarser than 120 km; Taylor 

et al., 2012), the majority of model studies performed so far on EDW is exactly based on the use of 

GCMs, both using a single GCM (e.g., Fyfe and Flato, 1999; Liu et al., 2009; Rangwala et al., 2010; 

Yan et al., 2016) or multi-model/multi-member ensembles (e.g., Rangwala et al., 2013, 2016; Palazzi 

et al., 2017). In a recent study, for example, Yan et al. (2016) performed specific experiments to test 

the sensitivity of the CCSM3 GCM to changes in CO2 concentrations and found that the changes in 

snow depth and cloud cover in and around the Tibetan Plateau in response to CO2 quadruplication 

would lead to EDW. Rangwala et al. (2013) analysed the CMIP5 GCMs up to 2100 and found that 

warming rates are projected to be amplified at higher altitudes with respect to the adjacent areas 

in the Tibetan Plateau and in the Rocky Mountains in North America, especially in the cold season. 

They found enhanced increases in the minimum temperature in the Tibetan Plateau related to 

increases in the downward longwave radiation and in the maximum temperature in the Rocky 

Mountains associated with snow reduction and snow-albedo feedbacks. Palazzi et al. (2017) 

investigated elevation-dependent warming in the Tibetan Plateau–Himalayas using a subset of the 

CMIP5 ensemble and found that changes in surface albedo, atmospheric humidity and downward 

longwave radiation are relevant factors for EDW in that area, with surface albedo being the leading 

driver. 

We summarize here below the results of one recent study (Palazzi et al., 2019) which analyses EDW 

in three different mountain regions of the world – the Colorado Rocky Mountains, the Greater 

Alpine Region (GAR) and the Tibetan Plateau–Himalayas shown in Figure 3 - using one state-of-the-

art Global Climate Model (EC-Earth version 3.1, Hazeleger et al., 2010, 2012). The results which we 

found for the GAR, in particular, are part of the expected outcomes of the NextData project and will 

be discussed in detail in this chapter.  

The aim of that study was to investigate the impact of model spatial resolution on the 

representation of this phenomenon and to highlight possible differences in EDW and its causes in 

different mountain regions of the Northern Hemisphere. In fact, we used EC-Earth climate 

simulations at five different spatial resolutions, from ∼ 125 to ∼ 16 km, available for this specific set 



of simulations. The coarsest of them, about 125 km, is the one typically used in state-of-the-art 

global climate model simulations (e.g. in the latest CMIP5 intercomparison project), while the finest, 

about 16 km, is a resolution typically used for numerical weather predictions. 

 

Figure 3. Topographic maps of the three study areas (left: Rocky Mountains; middle: Greater Alpine Region; right: Hindu 

Kush–Karakoram–Himalaya–Tibetan Plateau) from a high-resolution Digital Elevation Model at ∼ 0.0167° resolution. 

Green areas lie below 500 m a.s.l. and are excluded in our analysis (Palazzi et al., 2019). 

That specific set of simulations with EC-Earth were performed in the framework of the PRACE 

project “Climate SPHINX” (Stochastic Physics HIgh resolutioN eXperiments), whose detailed 

description can be found in Davini et al. (2017) and in the project web pages 

(http://www.to.isac.cnr.it/ sphinx/). Briefly, these are atmosphere-only experiments extending for 

30 years in the past (from 1979 to 2008) and 30 years in the future (from 2039 to 2068) using forcing 

conditions from the Representative Concentration Pathway emission scenario RCP 8.5 (Riahi et al., 

2011), which assumes no stabilization in greenhouse gas emissions during the 21st century. For each 

resolution, more than one model member was produced. However, owing to computational costs, 

a different number of EC-Earth members is available for each resolution, from twenty (coarsest 

resolution) down to two (finest resolution). A peculiarity of the SPHINX experiment is that half of 

the members at each resolution was run including base physics while the other half using stochastic 

parameterizations (Davini et al., 2017), the latter being a way to include small-scale processes in 

coarse resolution without being computationally-demanding. These ensembles gave us the 

opportunity to gauge both the internal variability of the EC-Earth model and the uncertainty 

associated with the specific model chosen (either as model implement base physics and the model 

with stochastic parameterizations).  

This model study showed that the more frequent drivers of EDW in the three northern hemispheric 

mountain regions (Rocky Mountains, GAR and Himalayas) and in the four seasons are the changes 

in albedo and in downward thermal radiation and this is reflected in both daytime and nighttime 

warming. In the GAR (and in the Tibetan Plateau-Himalayas), an additional driver is the change in 

specific humidity. A clear dependence on the resolution on the model ability in simulating the 

existence of EDW was not found, however in none of the regions. On the other hand, specific EDW 

characteristics such as its intensity and the relative role of different driving mechanisms may be 

different in simulations performed at different spatial resolutions. As an additional, interesting 

result, the role of internal climate variability was found to be significant in modulating the EDW 

signal, as suggested by the spread found in the multi-member ensemble of the EC-Earth 

experiments which were used. 

As already pointed out in Section 2.2, the first step to assess EDW is to quantify a warming signal. In 

the study presented on here, this is evaluated as the difference between the 2039–2068 future 



climatology and the 1979–2008 past climatology of the minimum and of the maximum daily 

temperature (Δtasmin, Δtasmax). The temperature change between the future and past climatology 

is evaluated on a seasonal basis using the standard definition of the seasons for the Northern 

Hemisphere mid-latitudes: winter (December–February, DJF), spring (March– May, MAM), summer 

(June–August, JJA), and autumn (September–November, SON).  

The second step is to assess whether the warming signal in minimum and maximum temperatures 

exhibits a dependence on elevation and if the signal is statistically-significant. We calculate the slope 

obtained by linear regression of timeseries of daily minimum or maximum temperature against the 

model elevation. The regression is performed both at each grid point and using data averaged into 

elevational bands. The statistical significance of the linear slopes is assessed using a Student’s t test, 

which tests against the null hypothesis that the coefficient of the regression is zero (no slope). We 

also explore a methodology based on grouping the temperature change data into elevation bins and 

then fitting the Probability Density Function (PDF) of the temperature changes evaluated for each 

bin with a LOcal regrESSion (LOESS) method. In fact, the uneven distribution of points at different 

elevations may have an impact on the slope evaluation and the dependence of the temperature 

changes with elevation may not be linear. Using the PDF solves the first issue while the LOESS 

regression would highlight possible departures from linearity. Only grid cells with elevation above 

500 m a.s.l. are considered in order to reduce some of the influence of the coastal areas or of other 

areas generating potential interference, such as the Po Valley in the Greater Alpine Region. 

Figures 4 and 5 show, for the minimum and maximum temperature respectively and for the GAR, in 

black the regression line evaluated using all data, in green the regression line evaluated fitting the 

average of the data (green dots) in each 100 m-thick elevational bin, and in blue a LOESS fitting 

curve. Purple shading indicates the probability density of a given minimum temperature change in 

each elevation bin. Figure 6 shows, for each model resolution (displayed along the x-axis) and season 

(each column plot), the value of the slope describing the linear relationship between either the 

minimum or maximum temperature change and the elevation (corresponding to the slope of the 

green line in Figures 4 and 5). Each grey circle indicates the output of one individual model member 

at each resolution, while the black circle denotes the multi-member mean. Empty symbols indicate 

elevational gradients of surface warming that are not statistically significant. Positive slopes in 

Figure 6 indicate EDW, while negative slopes highlight the situations in which there is still warming 

but it is larger at lower elevations (assuming a linear relationship) and we do not focus on this kind 

of occurrences. Finally, Table 1 summarizes the information provided in Figure 6. 

In the Greater Alpine Region, EDW is detected in summer and autumn at the three finest resolutions, 

while in winter and spring it is detected only at the coarsest resolutions (T255 and T159 in winter, 

T159 in spring). The relationship between warming rates and elevation is well represented by a 

linear model, as clearly visible in Figures 4 and 5. Further, the PDF of the temperature change in 

each bin is well peaked around its mean value, which allows to have an unambiguous estimate of 

the warming expected at each elevation.  

The season showing the most striking evidence of EDW in both tasmin and tasmax is autumn (this 

is true also for the Rocky Mountains and the Himalayas, which are not discussed in this report, see 

Palazzi et al., 2019 for details). In fact, the elevational gradients of warming rates in SON exhibit 

always a positive and statistically significant slope, except for tasmax at t255 and t159 resolutions, 



and the spread among the individual model realizations at each resolution is overall smaller than 

in the other seasons. EDW is not simulated for tasmin in DJF and in MAM: the statistically significant 

slopes which we found, in fact, are all negative. In some cases, we find considerable variability of 

the response among the ensemble members at a given resolution and, in a few cases, some 

members present both positive and negative slopes. We do not find any clear signal in the response 

of the different members run in this set of simulations to be directly ascribable to the two possible 

models used in SPHINX (i.e., the use of either base physics or stochastic parameterizations). This is 

visible in Figure 6 looking at the highest resolution (t1279) results, as the only two members 

available at this resolution, run either with or without stochastic parameterizations, do not provide 

significantly different EDW response. 

 

Figure 4. Dependence of minimum daily temperature (tasmin) on elevation for the Greater Alpine Region. The black line 

is the regression line evaluated using all data while the green line that evaluated fitting the average of the data (green 

dots) into each elevational bin. Superimposed is the PDFs of the temperature change calculated for each bin (shading). 

The LOESS curved fitting line is also shown in blue. From Palazzi et al., 2019 (supplementary material). 

 

In order to identify the variables that may potentially contribute to EDW in the Greater Alpine 

Region we considered the factors whose changes may alter the surface energy balance and cause 

temperature variations, including surface albedo, surface downwelling longwave (thermal) and 

shortwave radiation, and near-surface specific humidity, as already suggested by the literature (e.g. 

Rangwala and Miller, 2012; Palazzi et al., 2017). We calculated the change between the average in 

the period 2039–2068 and the average in the period 1979–2008 of the possible EDW drivers (as 
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done for the temperatures) and, in particular, the absolute change for albedo (Δalbedo) and the 

fractional (or normalized) change for rlds, rsds, and huss (Δrlds∕rlds0, Δrsds∕rsds0, Δhuss∕huss0). 

Fractional changes are calculated relative to the averaged climatology between the mean in the 

years 1979–2008 and the mean in the years 2039–2068). In order for the variables listed above - 

Δalbedo, Δrlds∕rlds0, Δrsds∕rsds0, Δhuss∕huss0 – to be actual EDW drivers, the following conditions 

have to be satisfied: 

1) they have to exhibit a dependence on the elevation and the sign of that dependence has to be 

physically consistent with enhanced warming with elevation, and  

2) they have to spatially correlate with temperature variations even if the dependence on 

elevation is removed.  

Condition (1) implies that the changes in radiations (rsds, rlds) and in huss have to exhibit the same 

elevational dependence as the temperature change does: if these variables increase (decrease) 

also the temperature change increases (decreases). On the contrary, changes in albedo have to 

exhibit an elevational gradient of opposite sign, since an increase in albedo leads to a reduction of 

absorbed radiation at the surface and, therefore, to a decrease in surface warming. Basically, 

condition (1) ensures that the variation with altitude of a given variable and the altitudinal 

dependence of temperature changes are related with each other by some physical mechanisms. 

Condition (2) is essential to identify those variables which still (spatially) correlate with 

temperature changes independently of elevation.  

 

Figure 5. The same as Figure 3, for the maximum temperature (tasmax). From Palazzi et al., 2019 (supplementary 

material). 
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Figure 6. Elevational gradients of the seasonal temperature change in the Greater Alpine Region, for each ensemble 

member at different EC-Earth model resolutions. The minimum and maximum temperature changes are shown in the 

top and bottom panels, respectively, while different seasons are organized in the different columns. Each gray circle is 

the output of one individual model ensemble member at each resolution, while the black circle denotes the multi-

member mean. The open symbols represent statistically non-significant elevational gradients of warming rates. From 

Palazzi et al., 2019. 

 tasmin tasmax 

 t1279 t799 t511 t255 t159 t1279 t799 t511 t255 t159 

DJF (N) (N) N (N) N N (N) (N) Y Y 

MAM (Y) N N N N (N) N (N) (Y) Y 

JJA Y Y Y (N) (N) Y Y Y N (N) 

SON Y Y Y (Y) Y Y Y Y N (N) 

Table 1. Cases where EDW (i.e., enhanced warming rates with elevation) is detected or not detected (indicated by Y and 

N respectively). Parentheses indicate cases where the signal is not statistically significant. 

To disentangle the relative importance of the identified EDW drivers in each season and region we 

set up a multiple linear regression model (see Eq. 1) in which the change in daily minimum or 

maximum temperature is the predictand and the possible drivers are the predictors. Predictors 

and the predictand are altitude-detrended, by removing the linear fit on elevation, and 

standardized, by dividing each change by its standard deviation over the whole spatial domain. 

    (1) 

In Eq. 1 the drivers correspond to the variables that, among Δalbedo, Δrlds∕rlds0, Δrsds∕rsds0, and 

Δhuss∕huss0, fulfil conditions (1) and (2) listed above. This approach allows to test all the possible 

combinations of the n predictors that lead to a different regression model. Overall, the possible 

regression models are (2n− 1) and their ability in predicting the temperature change is quantified 

by the coefficient of determination R2 that measures the proportion of the variance of the 
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predictand that they can explain: the closer R2 is to 1, the better the prediction is. At the same time, 

the value of R2 allows to quantify how much of the EDW response in the model is not explained by 

the predictors considered. By construction, the regression models including a larger number of 

predictors are associated with higher values of R2. Therefore, to measure the relative quality of the 

regression models we use the Akaike information criterion corrected for finite sample sizes (AICc), 

which favors the models with less predictors and penalizes those with more (the lower the AICc, 

the better the model). 

We analyse the role of the four variables, possible drivers of EDW (Δalbedo, Δrlds∕rlds0, 

Δrsds∕rsds0, Δhuss∕huss0) in the GAR, in the different seasons and assessing whether model 

simulations performed at different spatial resolutions present different behaviours. From a 

practical point of view we proceed with the calculation of the three linear Pearson correlation 

coefficients described below, useful to check if the conditions (1) and (2) are fulfilled: 

– R1, between either Δtasmin or Δtasmax and elevation, and its statistical significance, to highlight 

the cases with or without EDW. 

– R2, between each of the four possible EDW drivers and elevation, and its statistical significance; 

– R3, between the (minimum, maximum) temperature change and each of the four possible EDW 

drivers, and its statistical significance. R3 is calculated after having removed the dependence on 

elevation of each variable, which is obtained by considering the residuals compared to a linear fit 

respect to elevation. 

A positive sign of R2 for Δrlds∕rlds0, Δrsds∕rsds0, Δhuss∕huss0 and −Δalbedo is physically consistent 

with EDW (i.e., with the condition R1 > 0). Therefore, having R2 greater than zero and statistically 

significant is one necessary condition for those variables to be actually drivers of EDW. For the 

variables that fulfil this condition we compute the correlation coefficient R3, measuring their spatial 

correlation with the temperature change, after having detrended all variables for elevation. The R3 

values are shown in Figure 7 for tasmin (left column) and tasmax (right column). Grey boxes indicate 

the cases in which there is no EDW or it is not statistically significant, based on the values of R1, 

while white boxes identify the situations in which  

– for a given variable, R2 is negative or not statistically- significant, which indicates that the variable 

certainly cannot be a driver of EDW. We recall that the condition R2 < 0 applies also to the change 

in albedo since we use − Δalbedo in the calculations, 

– the spatial correlation between a possible driver of EDW and the temperature change is negative. 

Figure 7 thus indicates what are the possible drivers of future EDW in the GAR and how much they 

correlate (value of R3) with the change in the minimum and maximum temperature. The relative 

contribution to EDW of the different drivers can be assessed using the multiple linear regression 

model described by Eq. 1. Since we notice that the season showing the strongest evidence of EDW 

is SON, for simplicity in the following we discuss in detail the results of application of the multiple 

linear regression model for SON only. The other seasons are described in a more qualitative way 

instead. In the GAR, the three drivers of the changes in tasmin in JJA and SON (in DJF and MAM EC-

Earth did not show EDW) are Δalbedo, Δrlds∕rlds0, and Δhuss∕huss0. The only EC-Earth resolutions 



which are able to identify the simultaneous contribution of all three drivers are T1279 and T799 

and we apply the multiple linear regression model only for these two resolutions (and for SON). 

The results are summarized in Table 2, left columns. At T1279, the four models including Δrlds∕rlds0 

as a predictor show the highest values of explained variance among the seven regression models. 

At T799 the first three models and the fifth in the rank include Δrlds∕rlds0, the model combining 

Δalbedo and Δhuss∕huss0 ranking fourth. At both resolutions, among the three single-predictor 

models, the one with Δrlds∕rlds0 shows the highest R2. The three multi-predictor models including 

Δrlds∕rlds0 in conjunction with any other driver are capable of accounting for more than half the 

variance of the predictand at T799 (more than 20% at T1279). Therefore, Δrlds∕rlds0 is found, 

among the drivers which we considered, essential to drive the changes in tasmin in SON in the GAR. 

tasmin tasmax 

  

 

Figure 6. Correlation coefficient between each of the seven possible EDW drivers and the minimum temperature change 

on the left and the maximum temperature change on the right) in the four seasons. The drivers are displayed along the 

x-axis. Grey boxes indicate the cases in which there is no EDW or it is not statistically significant. White boxes identify 

the cases in which R2 is negative or not statistically-significant and the spatial correlation between a possible driver of 

EDW and the temperature change is negative. Modified from Palazzi et al., 2019. 



As for the changes in tasmax, we identify as drivers in DJF Δalbedo, Δrlds∕rlds0, and Δhuss∕huss0 at 

T255 and Δalbedo and Δhuss∕huss0 at T159. In JJA, the drivers are Δalbedo and Δrlds∕rlds0 and the 

signal is robust across all EC-Earth resolutions (T1279, T799, T511) at which EDW is found. In SON, 

the drivers are Δalbedo and Δrlds∕rlds0 at T511 and Δalbedo, Δrlds∕rlds0 and Δhuss∕huss0 at T1279 

and T799. For the latter two resolutions we discuss the results of application of the multiple linear 

regression model to study the relative contribution of the three identified drivers (see the right 

columns in Table 2). Δhuss∕huss0 emerges as the most important driver at T1279, while Δalbedo is 

the most important driver at T799. In both cases the proportion of the maximum variance explained 

by the best-performing regression model is quite low (44% at T1279 and 41% at T799). 

In general, our analysis shows that the more frequent EDW drivers in all seasons are the changes in 

albedo and in downward thermal radiation and this is reflected in both daytime and nighttime 

warming. It is clear that our picture omits other factors which may contribute to EDW in the different 

regions. It is interesting to observe that in the Alps, and at the coarsest horizontal resolutions only, 

a significant EDW signal related to albedo changes is observed in the DJF season. At the coarsest 

resolutions, the orography is smooth, and the highest elevations are not realistically represented in 

the climate model. This result seems to suggest that the “model’s highest elevations” might undergo 

an earlier (winter) transition from being snow covered to being snow free in the future in winter 

months. Of course this signal is an artifact typical of the coarsest resolutions and disappears at finer 

resolutions when the orography is represented with more accuracy. On the contrary, the finest 

resolutions are the only ones able to catch the change in albedo as an EDW driver in SON in the GAR. 

This result would suggest an added value of the finest resolution simulations in the Alpine area. 

 

Table 2. Application of the Eq. 1 including the three predictors (Δalbedo, Δhuss∕huss0 and Δrlds∕rlds0) of the minimum 

(left) and maximum (right) temperature change in the GAR in SON. For each of the seven regression models obtained 

from the combination of the three predictors, the table shows the values of the regression coefficients a1 (referring to 

Δalbedo), a2 (referring to Δhuss∕huss0) and a3 (referring to Δrlds∕rlds ), of the coefficient of determination R2 and of 

the AICc. See Palazzi et al., 2019. 



Finally, it is important to stress that enhancing the spatial resolution in climate models may be 

crucial especially in complex topography, but also improvements in model parameterizations, 

particularly those involving surface processes in high-mountain areas, the snow-albedo and cloud-

radiation feedbacks, may allow for a better simulation of EDW in the models. Considering the 

importance that mountains have as early warning indicators of the consequences of global 

warming, EDW is a phenomenon that calls for further research and efforts, both in terms of 

observations and of model simulations. 

2.4 Causes of EDW 

Several mechanisms have been recognized as possible drivers of EDW. A full review of them can be 

found in Rangwala et al. (2012) and in Pepin et al. (2015), and references therein. These can arise 

either from an elevation-dependent change in drivers or in key variables such as snow and ice cover, 

clouds, water vapor amount, aerosols, soil moisture, or from an elevation-dependent sensitivity of 

surface warming to changes in these possible drivers. The considerations above suggest that EDW 

is a complex phenomenon, complicated by a number of variables which interact with each other, 

possibly giving rise to feedback mechanisms. All this, together with the limitations inherent in both 

high-altitude observations and in model simulations discussed above, makes it very difficult, but at 

the same time also very exciting, the study of this phenomenon. In the following, some of the main 

EDW causes investigated so far are discussed in more detail.  

 
2.4.1 Snow/ice albedo feedback  

The snow/ice albedo feedback is among the strongest feedback loops active in the climate system, 

particularly important in cold regions. It is illustrated in simple way in Figure 7. 

In response to a temperature increase, more snow or ice melts thus decreasing the local albedo, 

allowing for increased absorption of solar radiation and, by consequence, for an enhancement of 

the initial warming. Since this feedback modulates the surface absorption of incoming solar 

radiation, it is expected to affect primarily maximum temperatures. Nevertheless, it has been found 

that this feedback also acts in modulating nighttime minimum temperatures, especially when 

decreases in snow cover are accompanied by increases in soil moisture. This can, in turn, lead to a 

greater retention in the land surface of the solar energy absorbed during the day and, therefore, to 

an amplification of the longwave radiation release during the night (Rangwala et al., 2012). Ice-

albedo feedback has been recognized as the most important EDW driver for both the maximum and 

the minimum temperature also by Palazzi et al. (2017), in a study focused on the Tibetan Plateau-

Himalayas. 

 



 
Figure 7. Sketch on how the ice/snow albedo positive feedback works, resulting in an amplification of an initial warming 

in high-elevation regions.  

 
This feedback is most effective at elevations around the annual 0°C isotherm (Pepin and Lundquist, 

2008, Palazzi et al., 2017, 2019), and it is expected to act predominantly at lower elevations earlier 

in the cold season while at higher elevations later on.  

 

2.4.2 Cloud cover  

Clouds, and their related processes and feedbacks, are among the most (or probably the most) 

uncertain components of the climate system. Clouds affect both shortwave and longwave radiation 

and, as a consequence, their effect on the climate system is twofold. Some types of clouds are 

effective in reflecting shortwave radiation, which can lead to cooling, while others act like 

greenhouse gases by absorbing and re-emitting terrestrial longwave radiation, and thus can lead to 

warming. A decrease in cloud cover during the day is expected to enhance the maximum 

temperature, while a decrease in cloud cover during the night is expected to lower the minimum 

temperature.  

To what extend can clouds contribute to EDW? Observational and model studies conducted over 

the Tibetan Plateau have shown that an increase in cloud cover during the night can lead to an 

increase in the minimum temperature and is among the main mechanisms responsible for EDW in 

the minimum temperature in this area (Wu, 2006).  

Owing to the lack of long-term observational cloud datasets able to resolve their local impact on 

climate, quantifying cloud feedbacks still remain challenging and mostly rely on the use of numerical 

models of the climate system. Liu et al. (2009), for example, examined more than a hundred of 

weather stations and the output of a high-resolution climate model simulation under a future 

greenhouse-warming scenario finding that the increase in monthly minimum temperatures was 

greater at higher elevations in the Tibetan Plateau. They recognized in cloud-radiation effects the 

mechanisms responsible for this elevational dependence. 
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2.4.3 Water vapor modulation of longwave heating  

A warmer atmosphere is able to hold more water vapor. Though not directly emitted by human 

activities, water vapor is a powerful greenhouse gas and, as such, it participates in one of the most 

important feedback loops active in the climate system, the water vapor/greenhouse gas feedback: 

more water vapour in the atmosphere leads to more warming, more warming leads to more water 

vapour, and so on and so forth.  

Increases in surface specific humidity have been suggested to be partly responsible for a rapid 

increase in surface warming in the Tibetan Plateau (Rangwala et al., 2009, 2010) in the late 20th 

century. This is related to the relationship between the increases in specific humidity and the 

increases in downward longwave radiation (DLR), which produces a surface warming.  

Although increases in downward longwave radiation associated with increasing specific humidity 

occur globally, the sensitivity is non-linear and it is enhanced when the initial humidity is low as is 

commonly found at high elevations during the cold season. DLR, in particular, has large sensitivities 

to specific humidity when its concentration is below 5 g/kg. Such low values occur during the cold 

season and more widely at higher elevations. The same results were found by Rangwala et al. (2010) 

for the Tibetan Plateau.  

 
2.4.4 Aerosols   

Absorbing aerosols like black carbon (soot) and dust are additional contributors to warming. During 

the boreal spring, an atmospheric layer of dust from deserts and locally-emitted black carbon can 

be found up to 5 km high in the Indo-Gangetic Plain against the foothills of the Himalayas and 

Tibetan Plateau (Ramanathan and Carmichael, 2008). Such a layer is able to absorbs solar radiation 

and warm the mid-troposphere, which in turn increases the rate of spring snowmelt and leads to 

enhanced warming owing to the associated positive feedback.  

In their review paper, Ramanathan and Carmichael (2008) suggested that black carbon in the 

Himalayan Mountains arising from anthropogenic activities might be responsible for half the total 

warming there during the last several decades. Because black carbon affects the radiation both 

absorbing solar radiation in the troposphere and decreasing surface albedo when deposited on 

snow or ice, it is very difficult to assess its effect on elevation-dependent warming. Depending on 

the elevation at which black carbon is deposited it could either contribute to enhanced or reduced 

warming with elevation during the melt season.  

Similar to black carbon, dust also absorbs radiation within the atmosphere and reduces surface 

albedo when deposited on snow; similarly to black carbon, however, the impact of dust on EDW will 

depend on the elevation at which it is deposited.  

2.5 Open issues 

Elevation-dependent warming is an issue which needs more systematic investigation. Part of the 

problem is that there is no universally agreed or standardized way to face it. Different researchers 

have posed slightly different ways of answering the question of whether mountains are warming 

faster than lowland areas, using different types of data and different methods of analysis.  

Which temperature one is usually dealing with?  



Detecting a signal of EDW first implies detecting temperature. One of the issues is exactly which 

temperature one is dealing with. Usually, temperature is intended to be 2 meter air temperature, 

that is what is usually measured by meteorological stations. This variable is what is actually available 

classified as surface temperature in most climate dataset and what is stored in the output of 

numerical climate model simulations as “surface air temperature (tas)”. However, in other research 

fields, like ecology or ecosystem research, one may be rather more interested in surface (skin) 

temperature, which is actually what is “felt” by living organisms. Analysis of satellite data generates 

the skin temperature (land surface temperature, LST), which is however different from near surface 

air temperature, in terms of physical nature and level of uncertainty inherent in the measurement 

of each parameter. 

 

Standardized and agreed methodology to assess EDW  

A universal method of defining and quantifying EDW in both observations and model simulations is 

needed. Researchers have used different data and different methodologies to investigate the 

elevational dependency of warming rates. Data sources include surface stations, model data, 

reanalysis data, radiosondes, satellite data. Although there are differences, most authors generate 

time series at locations of a given elevation and then extract the trend in this time series. Some 

authors create composite time series over an area (averaging a certain elevation), others trends at 

individual points.  

There is no agreement on the length of the time period to be considered (though having at least 30 

years should be the minimum requirement), or indeed whether there should be a composite 

regional series or lots of series at points of different elevations which are compared. Trends are 

usually quantified using some sort of regression line. The simplest method is the slope of the least 

squares regression line fitted to the time series, and then expressed in °C/decade. Linearity is an 

approximation. 

There has also been a lack of consistency in the methods and data used to quantify the rate and 

patterns of warming. Differences in the time periods examined, the stations compared, the 

elevational range selected, and the temporal resolution of the data (that is, daily versus monthly or 

annual temperatures) all vary and thus contribute to differences in trends. Many studies are 

relatively short (less than 50 years) and so strong interdecadal variability often contributes to 

observed trends. Although some data homogenization has been achieved for station records in 

Europe and North America, there is a particular problem with the mountain data in the tropics, 

which is both sparse and inhomogeneous. 

 
2.5.1 Issues in observations and model simulations 

EDW is a complex process, both to measure and to model, and complicated by different factors. On 

the observational side, a homogeneous and dense network of meteorological stations would be 

required to clearly document the rate and the spatial distribution of warming as a function of 

elevation, but this is not the situation most commonly encountered in high-altitude regions.  

The number of high-elevation stations providing long-term records (longer than at least 20 years) is 

still not adequate to allow evaluating statistically significant temporal trends, which is the first step 



for the assessment and quantification of EDW. Mountain observations are known to be biased by 

altitude, since most in-situ stations are installed in valleys rather than on mountain slopes and on 

the tops, which represents an additional source of uncertainty.  

Monitoring of land surface temperatures (LST) from satellite is another possible approach for 

studying EDW. The clear advantage of satellite observations over in-situ station data is their 

homogeneous spatial and temporal coverage; the disadvantage is that their temporal coverage is 

usually shorter than that provided by station records and less suitable for detecting climatic trends 

and their statistical significance. These data are also still poorly validated in high-elevation regions 

where cloud occurrence represents an obstacle for satellite monitoring and data interpretation. 

Model simulations are not affected by many of the inadequacies inherent in all kinds of 

observations, such as sparseness and limited temporal extension of the data, and they represent a 

very useful laboratory to investigate the possible mechanisms responsible for EDW. In fact, the 

output of numerical models includes all the variables, and their dynamical and physically-based 

relations, needed to build a picture of the EDW drivers, at a given spatial and temporal resolution, 

and long simulations can be run both to reproduce the past and to study future projections. Models, 

even RCMs, are generally limited in spatial resolution and require observational data for validation, 

making it difficult to be sure that simulations are accurate enough to be confident on future 

projections. Model resolution plays an important role for EDW. It is important to stress, however, 

that enhancing the spatial resolution in climate models may be crucial especially in complex 

topography, but also improvements in model parameterizations, particularly those involving surface 

processes in high-mountain areas, the snow-albedo and cloud-radiation feedbacks, may allow for a 

better simulation of EDW in the models (Palazzi et al., 2019).  

 

2.6. Conclusions 

More research is needed to understand the complexity of mountain regions and, in particular, the 

EDW phenomenon and its driving mechanisms. The model studies performed so far found that the 

change in surface albedo turns out to be one of the main driving factors for EDW, suggesting the 

urgency of further developing models of those Earth system components which affect albedo, such 

as snow cover and glaciers. Proper simulation of snow cover requires appropriate simulation of 

precipitation and especially of snowfall and, by consequence, of clouds and cloud dynamics, which 

is one of the subgrid-scale phenomena in state-of-the-art GCMs, requiring the implementation of 

parameterisations. Also, proper parameterizations for the dependence of snow albedo on snow age, 

depth, terrain characteristics, aerosol deposition and others are of major importance.  

Modelling glaciers, their dynamics, and the effects of climate change on them is as complex as 

crucial, too. Glacier expansion and retreat depend on the balance between accumulation and 

ablation and, therefore, winter snowfall and summer temperatures are key ingredients to assess 

the future glacier conditions. There is still a deficiency in the way climate models represent snow 

and ice albedo, which is mentioned as one of the main causes for the cold bias that still affects many 

GCM simulations. These variables are land fields and are produced by the land vegetation models 

that are coupled to the other model components in the state-of-the-art Earth System models. 

Therefore, improving the land-surface models would lead to a better description of the high-



mountain cryosphere system. Besides that, the use of finer resolution models would be useful to 

depict the complex topography of mountain regions in a more realistic way and therefore improve 

the way the models represent the changes of snow at ground. 
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B., Jimenez P., Jones C., Kȧllberg P., Koenigk T., McGrath R., Miranda P., Van Noije T., Palmer T., 

Parodi J. A., Schmith T., Selten F., Storelvmo T., Sterl A., Tapamo H., Vancoppenolle M., Viterbo 

P., Willén U., 2010. EC‐Earth: a seamless earth-system prediction approach in action. Bull. Am. 

Meteorol. Soc. 91:1357–1363. https://doi. org/10.1175/2010BAMS2877.1. 
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