Regime shift triggered by an extreme climatic event in an
oligotrophic mountain lake
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Ecological regime shifts

Sudden changes in ecosystem status caused by passing a threshold where core ecosystem
functions, structures and processes are fundamentally changed (Andersen et al., 2009 TREE).
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Climate-induced regime shifts
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Climatic extremes - projections
2081-2100
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Impacts of climatic extremes on freshwater ecosystems
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The 2003 European summer heatwave

2003 summer T anomaly with respect to the 1961-1990 mean
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eAltitude: 1527 m a.s.l.

eSurface: 1.2 ha

°/max: 9.4 m
*\VVolume: 44058 m3

*Watershed
area: 17 ha

*Naturally fishless,
sporadic trout
introduction

Lake Scuro Parmense
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Long-term data
Hydrochemistry

Zmax, SDT, Water T at 1-m intervals, pH, EC, TA, DO, SRP, DRS;, N—NOZ', N—NO3',
N-NH4+, Chl-a

Zooplankton
Zooplankton density and composition — mostly species level

Life-history traits (body size, egg type and number, life stages, sex ratio) for
selected crustacean species




Annual Mean Air Temperature 1978 — 2012
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Summer Mean Air Temperature 1978 — 2012
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Summer 2003 at Lake Scuro Parmense

Lake bottom completely covered
by a charophyte
(Nitella gracilis)
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Heatwave impact on physical lake characteristics
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Water level (m)
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Heatwave impact on physical lake characteristics

Water level PAR at lake bottom
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Modelling vegetation response to changes in water level
Regime shifts in shallow lakes

(a) clear-water state
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Modelling vegetation response to changes in water level
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Modelling vegetation response to changes in water level

Vegetation (% cover)
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Implications of macrophyte take-over
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Eudiaptomus intermedius
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Nauplii abundance
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PC2 (18.5%)

Implications of macrophyte take-over

Chronological clustering (via MRT) of hydrochemical and zooplankton time-series
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Extreme climatic events may trigger regime shifts in lakes that
propagate across multiple trophic levels
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Lago Santo Parmense

Altitudine 1507 m s.l.m.
Z 22.5 m

max
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Detecting Stress at the
Whole-Ecosystem Level: The Case of

a Mountain Lake (Lake Santo, Italy)
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ABSTRACT

Detecting the early signs of stress is imperative for
the conservation of natural ecosystems. They may,
however, go unrecognized because ecosystems,
when disturbed, may act as sinks that absorb the
extemal impact without showing any evident
changes. This seems to be the case for Lake Santo, a
small water body located in a mountainous area of
northern Ttaly. Tourism activity in this area began
to develop in the eady 19705 and grew continu-
ously over the following 20 years. This activity
caused a continually increasing nutrient load into
the waters, but surprisingly the lake has remained
oligo-mesotrophic, as it was before human pressure
became a stressor to the lake. To anticipate possible
severe damage to the ecosystem, we searched for
early signs of stress by carrving out a retrospective
analysis based on a whole-ecosystem approach
using trophic flow networks. Ecosystem properties
of the lake as calculated from network analysis for
the disturbed {year 1991) and unimpaced (vear

1973} configurations were compared, with the
support of sensitivity analysis and statistical tests.
We found evidence that in the period 1970-90
nutrient enrichment did change the coumse of
normal development as the observed increase in
system throughput was accompanied by a drop in
the level of mutnal organization of flows, which
instead would be expeced to increase during the
natural progression of the ecosystem. The scenaro
that emerged from the comparison of system-level
indices. cyding activity, trophic structure, and
trophic efficiency indicates that the ecosystem has
been subjected to stress. In particular, the type of
disturbance corresponds to a quantitative definition
of eutrophication.

Key words: ecosystern  development; lake eco-
system; nerwork analysis; nutrient cycling: stressed
ecosystem; system-level trends: trophic analysis.



Network analysis
Lago Santo Parmense, summer 1991

3 1 Flagellatae; 2 Clorophyceae; 3

T Crisophyceae; 4 Dinophyceae; 5
Criptophyceae; 6 Diatomeae-
Cianophyceae; 7 Living POC; 8
Keratella quadrata; 9 Keratella
cochlearis; 10 Kellicottia longispina;
11 Ascomorpha ecaudis; 12
Synchaeta sp.+Ploesoma sp., 13
Polyarthra spp.;14 Asplanchna
priodonta, 15 Filinia terminalis, 16
Conochilus spp., 17 Other Rotifers,
18 Daphnia longispina, 19 Bosmina
longirostris, 20 Eudiaptomus
intermedius, 21 Nauplii, 22
Copepodites, 23 Other Copepods,
24 Fish, 25 WPOC, 26 BPOC, 27
DOC.




