

UNIVERSITA' DEGLI STUDI DI TORINO POLITECNICO DI TORINO

Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio

SNOWMELT MASS AND ENERGY BALANCE ON A STEEP SLOPE

Partially funded by

NEXTSNOW Project

<u>Stefano Ferraris</u> Maurizio Previati Davide Pognant Davide Canone

1) THE ALPS HAVE COMPLEX MORPHOLOGIES

2) THE ALTITUDE RANGE WHERE THE SNOWLINE WONDER IS WIDER AND WIDER, DUE TO GLOBAL WARMING

In other words, in between these two extremes (2500 m high and the plain)

there is a range in altitude of several hundred meterswhere snow falls and meltsaway several times per year.

Introduction

→ SOIL SURFACE SPATIAL VARIABILITY : ITS EFFECTS

→ FAST DYNAMICS (SURFACE TEMPERATURE RISE OF 20 DEGREES IN A FEW MINUTES, ALBEDO VARIES IN A FEW HOURS)

GLOBAL WARMING ENHANCES THESE DYNAMICS

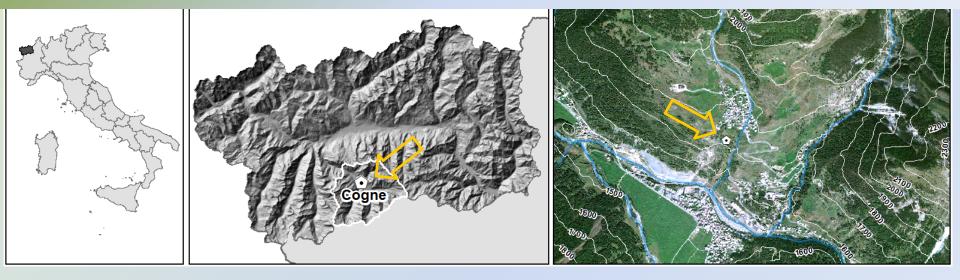
FEEDBACK ON THE ATMOSPHERE

INFLUENCE ON RIVER DISCHARGE AND GROUNDWATER RECHARGE

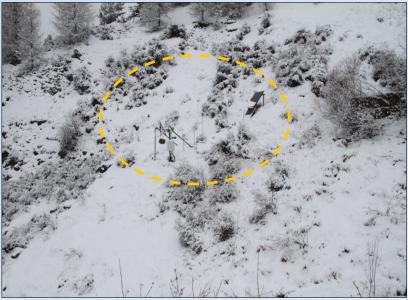
Energy and mass balance at the surface of a mountain slope, during repeated snowpack fusion events 3/10

Objective

Monitoring a south-east aspect slope at 1730 m asl during fast snowmelt events (1-3 days) and quantifying:


- Mass balance
- Energy closure (is often a problem)

 $\mathbf{R}_{\mathbf{n}} - \mathbf{G} - \mathbf{S} - \mathbf{H} - \mathbf{L}\mathbf{E} = \mathbf{M}$


M = energy needed to melt the snowpack

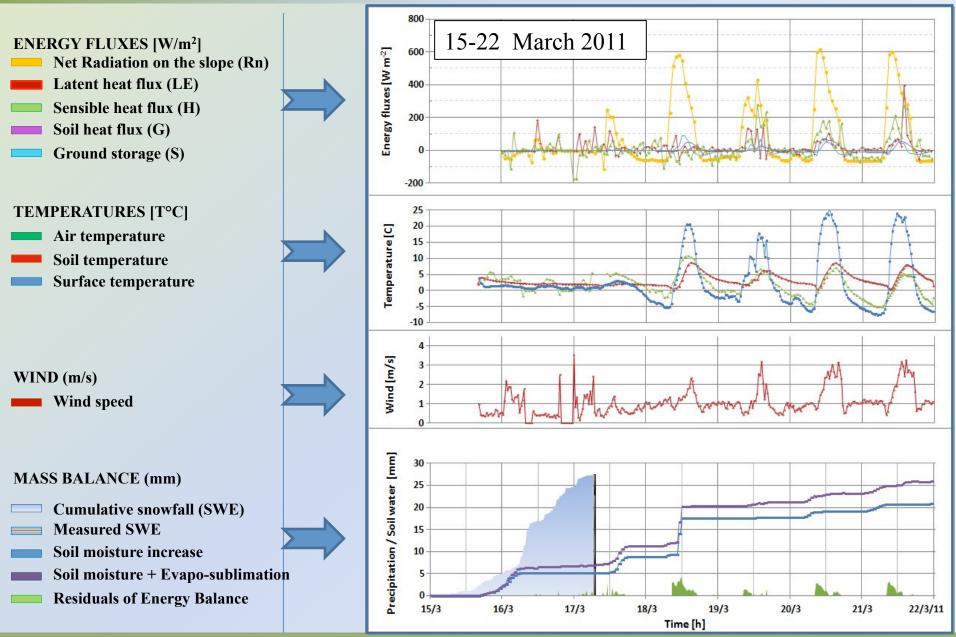
 $\mathbf{R}_{\mathbf{n}} = \text{Net Radiation}$ $\mathbf{G} = \text{Soil heat flux}$ $\mathbf{S} = \text{Soil heat stock variation}$ $\mathbf{H} = \text{Sensible heat}$ $\mathbf{LE} = \text{Latent heat}$

Location of the monitoring site

Altitude: 1730 m asl; Aspect: South-east; Slope: 26°; Average yearly T : +4°C; Average yearly precipitation: 650 mm; Landcover: herbaceous/ shrubs

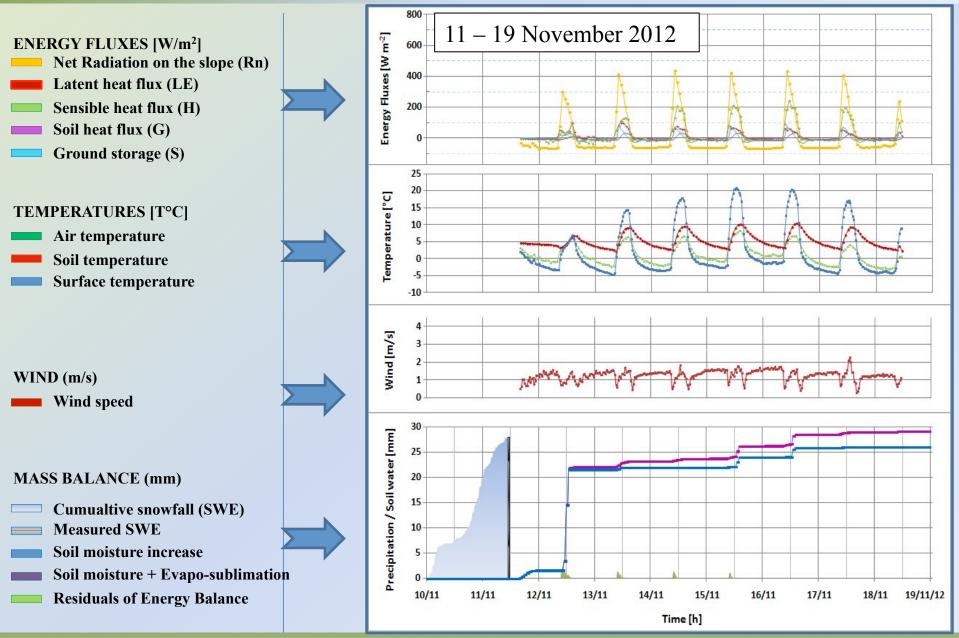
Energy and mass balance at the surface of a mountain slope, during repeated snowpack fusion events

Monitoring site



Tridimensional sonic anemometer Infrared gas analyser (Licor) Kripton hygrometer Thermo-hygrometer Net radiometer Soil heat plates $(x^2) - 6$ cm (thermocouples) TDR soilmoisture probes $(x_2) - 8$, 20, 40 cm Soil thermometers (x4) - 2 e 8 cmSurface infrared thermometer CR3000datalogger Photovoltaic electrical supply Nearby ARPA meteorological station

Monitoring start→ September 2010 (all year long) Snowfall events→ automn (October/November) spring (March/April)


Snow Water Equivalent range : 7.8 - 28 mm

Monitoring results

Energy and mass balance at the surface of a mountain slope, during repeated snowpack fusion events

Monitoring results

Energy and mass balance at the surface of a mountain slope, during repeated snowpack fusion events

Conclusions

First analyses of data show the following:

1) Mass balance is OK.

- 2) Solar radiation perpendicular to the slope provides enough energy to melt the whole snowpack in a few hours/days (depends on variable SWE, automn vs.springtime).
- **3)** The melting energy helps to close the balance, but it is not enough.
- **4) Evapo- sublimation is not disregardable (both mass and energy).**
- 5) Wind and soil heat contribution seems to be disregardable in this site, while the vegetation and litter between snow and soil needs to be better studied.

UNIVERSITA' DEGLI STUDI DI TORINO POLITECNICO DI TORINO

Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio

Prof. Stefano Ferraris Dr. Maurizio Previati Dr. Davide Pognant Dr. Davide Canone

What news? 4-component radiometer since 13th August 2014

Thanks for your attention !!

 \bigcirc