8th Annual Earth System Grid Federation

High Performance Data Analytics and Machine Learning developments in Ophidia

Sandro Fiore Head of the Data Science and Learning Research Team CMCC Advanced Scientific Computing Division

Donatello Elia CMCC Advanced Scientific Computing Division

Giovanni Aloisio Director of the CMCC SuperComputing Centre CMCC Strategic Council member

December 4-7, 2018

Introduction

- Research challenge: HPC & big data convergence at extreme-scale for eScience
- Goal: Scalable HPDA&ML software stack for eScience
- International Context: IESP (2008-2011), BDEC (2012-2018) and now BDEC2 (2018-2020)
- European projects: EESI (2008-2011), EESI2, EXDCI and now EXDCI2 (2018-2020)
- Research project: Ophidia (design study 2011, implementation 2012 present)
- This talk focus: Ophidia2.0

Ophidia

- Ophidia is a CMCC research project addressing fast and big data challenges for eScience
- It provides a paradigm shift, from sequential & client- to parallel & server-side data analysis

Paradigm shift at scale

S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, "Ophidia: toward bigdata analytics for eScience", ICCS2013 Conference, Procedia Elsevier, Barcelona, June 5-7, 2013

Key Features in Ophidia

- eScience framework
- Server-side
- Parallel
- In-memory
- Declarative
- Datacube oriented (multi-dimensional OLAP support)

- (Shared) Sessions
- Workflows and applications
- Interactive and batch support
- HPC and HTC tasks
- Both domain-oriented (e.g. nc) and domain-agnostic support (e.g. OLAP)

4

Multi-dimensional data and storage model

- OLAP-based (ndim-datacube)
- Dimension-independent
- Implicit and explicit dimensions
- Partition & distribution
- Flexible and scalable

Ophidia2.0 Architecture

- Interoperable interface (e.g. OGC WPS)
- Modular and extensible
- Parallel framework runtime
- I/O & analytics runtime
- Multiple storage back-ends
- Supports ranging from single operators to complex analyses

6

Three levels of parallelism

- Datacube-level parallelism
 - HTC paradigm
 - At the front-end level
 - Based on the "massive" operator concept
- Fragment-level parallelism
 - HPC paradigm
 - MPI/Pthread
 - At the HPDA framework level
- Array-level parallelism
 - HPC paradigm
 - OpeMP based
 - At the I/O & analytics server level

Analytics Workflow support (runtime perspective)

Analytics Workflow support (end-user perspective)

Multi-model analytics workflow case study (CMIP5-based)

The ESiWACE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 675191 http://www.esiwace.eu 10

Programmable framework

- PyOphidia provides a Python binding to Ophidia
- Consists of two classes:
 - Client class: connections,
 - submissions, workflows, sessions
 - Cube class: datacube operators
- Available in conda-forge

https://pypi.org/project/PyOphidia/

JupyterHub front-end

- Web access/env
- Integrated into the HPC environment (e.g. GPFS)
- Access via VPN
- Multiplexed front-end
- Fat-node hosting
- Terminal features available too (embedded)
- Integrated into the EOSChub project (ECAS thematic service)

Analytics back-end for the NextData project (I)

- Ophidia is also exploited in the NextData project
- Computing & data capabilities integrated into the same environment
 - Several datasets published by **CMCC** modelling divisions

OTime

- Catalogue browsing
- Data download
- Visualization capabilities
- Computing

Analytics back-end for the NextData project (II)

- Computing & data capabilities integrated into the same environment
- Terminal-based capabilities
- Google Earth (viz)

Analytics back-end for the NextData project (III)

- Programmatic access to the back-end datasets
 - Based on Python language
 - Jupyter Notebooks
 - Through PyOphidia

Parallel Import Monitoring

- ophclient.submit("oph_importnc2 src_path=[path=*.nc;]")
- Three scenarios on a I/O and analytics node
 - Single import
 - Multiple imports/delete
 - Multiple imports on the same node
- Network traffic
 - Inbound burst
 - No outbound data
- Memory increase

Cache effects

Parallel Import Benchmark (preliminary insights)

- Importnc2 operator
- HTC importnc2 statements
- Weak scalability benchmark
- Metrics
 - Execution time [s]
 - Throughput [GB/s]
- From 1 to 64 input files
 - 1 HPDAnode/1 input file
 - 16 fragments/node
 - 1 file 8.5GB (0.53TB)
- Up to 64 nodes \rightarrow 1024 cores

Robustness test up to 4096 threads and 2.1TB on 1024 cores have been performed

LSTM Primitives and SANIFS use case

- Time-series predictive analytics
- The algorithm has been divided in two phases: training and test/prediction
- Implementation based on the KANN library
- After the training, the resulting neural network with updated parameters is saved as a binary array in a datacube. It can then be reused in the test phase
- For test and prediction we defined another primitive
- The primitives can run in the oph_apply operator

oph_lstm(input_OPH_TYPE, output_OPH_TYPE, measure, dim_in, dim_out, n_h_layers, n_h_neurons, [dropout], [learning_rate], [unrolled_len], [minibatch_size], [max_epoch])

oph_lstm_predict(input_OPH_TYPE, output_OPH_TYPE, measure_a, measure_b, test)

Conclusions

- Ophidia2.0 provides a stronger integration of big data and HPC
 - Major step forward w.r.t. Ophidia1.4 and HPDA paradigm
 - Tight integration with HPC eco-system
 - New flexible and dynamic deployment approach
 - New release of the native I/O and analytics server
 - Improved management of multi-user scenarios
 - Three levels of parallelism to address higher scalability
 - Process-level (vs thread-level) connection to the OphidiaDB
- Planned to be released by this month (January 2019 at the latest). Stay tuned!

Thanks!

Do you want to join this effort?

Please get in touch with us soon sandro.fiore@cmcc.it