

SPECIAL PROJECT PP5

HAMMER

RelationsHips between meteo-climAtic paraMeters and ground surface deforMation time sEries in mountain enviRonments

F. Ardizzone, P. Allasia, M. Cignetti, D. Giordan, A. Manconi, M. Manunta

Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica

Consiglio Nazionale delle Ricerche, Istituto di Ricerca per il Rilevamento Elettromagnetico dell'Ambiente

OUTLINE

Project introduction

- Motivation and main objectives
- Expected results
- Project organization and activity
- Project state of art

INTRODUCTION

Topic 5: Reconstruction of ground surface deformation time series in test areas in mountain environments, and correlation to rainfall time series and implementation of the data and results in digital archives compatible with the NextData project archives

Duration: 21 months from January 2014 to September 2015

Participating units: (1) IRPI-CNR and (2) IREA-CNR

Coordinating unit: IRPI-CNR

Scientific coordinator: Francesca Ardizzone, IRPI-CNR

MOTIVATION

Natural and human-driven climatic and environmental changes can alter the frequency and the intensity of the slope processes in mountain areas, with unknown short and long-term effects on the landscapes

There is a **lack** of **information** on the **effects** of climate and environmental **changes** on the **frequency** and the **intensity** of **landslides** and their **triggering phenomena**

MAIN OBJECTIVES

HAMMER intends to deal with this gap by collecting time series of ground deformations, and associated times series of meteorological and climatic measurements

Consiglio Nazionale delle Ricerche

NextData, Aula Bisogno CNR, Roma, 3-4 Giugno 2014

MAIN OBJECTIVES

Collect time series of **surface** and **sub-surface** ground deformations including *in situ* and **DinSAR** measurements in **landslide areas** in the **Alps**, the **Apennines**, the **Pyrenees** and the **Andes**

Collect time series of **meteorological parameters** for the **same** areas

Demonstrate the capability of **DInSAR** techniques to provide **multidecadal** time series of **ground deformations** in different **physiographical** and **climatic** environments

Attempt statistical correlations between time series of meteorological parameters and time series of the ground deformations, for selected test sites

EXPECTED RESULTS

Review of the **scientific** and **technical literature** to determine **where** quantitative **surface** and **sub-surface** information on ground deformations and for **which periods**

Combined time series of **meteorological parameters**, surface and/ or sub-surface **ground deformations** including the products of **SAR data** and *in situ* measurements

Results of the statistical **cross-correlations** of the time series for the **selected test sites** including the **assessment** of their **reliability** and an **interpretation** of the results

ORGANIZATION

STEPS:

- Analysing and comparing displacement vs. meteoclimatic parameters using available data obtained by in situ monitoring techniques, such as Total Stations, GPS receivers, inclinometers, and by remote sensing techniques, such as advanced DInSAR
- Producing ground displacement time series for new sites, exploiting SAR images, where the findings of the previous step will be applied

ORGANIZATION

Work Packages(WPs):

Consiglio Nazionale delle Ricerche

- WP1 available time series collection and analysis includes four tasks (UNIT 1):
 - 1. collection of ground deformation time series, deliverables
 - 1 (month 7) and 2 (month 10)
 - 2. collection of meteorological/climate time series, deliverable 2 (month 10)
 - 3. the **statistical correlation** of the time series **deliverable** 5 (month 19)
 - 4. the **implementation** of a **database** for the storage of the time series **deliverable** 4 (month 12)
- WP2 production of new time series exploiting ERS1/2 and ENVISAT satellite images in some selected study areas to be included in the task 1.1 (UNIT 2)

WP1 ACTIVITY

TASK 1

- i. Collection and organization of **surface** and **sub-surface deformation time series** available to **Unit 1** for the **Alps** and the **Apennines** (months: from 1 to 7)
- ii. Collection and organization of ground deformation DInSAR time series already processed for the Apennines, Andes and Pyrenees (months: from 1 tot 10) and inclusion of the new products obtained by the new acquired SAR images (months: from 14 to 17)
- iii. Search of the surface deformation information available through the Piano di Straordinario Telerilevamento Ambientale for selected study areas in the Alps and the Apennines and through a literature review (months: from 2 to 14)

WP1 ACTIVITY

TASK 2

- i. Selection of relevant meteorological stations (month 3)
- ii. Collection and organization of the **meteorological/climate** time series (months from 3 to 10)

TASK 3

Statistical analysis of the correlation (or lack of correlation) between ground deformation and the meteorological/climatic time series (months from 13 to 19)

TASK 4

Consiglio Nazionale delle Ricerche

Design and the implementation of the database using the open source database system PostgreSQL + PostGIS SW and the preparation and delivery of the collected information for the NextData main portal (months from 3 to 13)

WP2 ACTIVITY

TASK 1

- Selection of the new test sites where the Unit 2 will produce deformation velocity maps and associated time series using ERS1/2 and ENVISAT satellite images provided by the Unit 1 through a Category-1 project (months: from 10 to 11)
- ii. Processing of the satellite images (months: from 12 to 15); the new products will be provide to the Unit 1 that will include the time series in the WP1

STATE OF ART

Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
WP1																					
1			~																		
2			~																		
3																					
4			~																		
WP2																					
1																					

KOM

Ongoing activities:

- Bibliography review (WP1 Task 1 and 2): to determine where quantitative surface and sub-surface information on ground deformations and for which periods
- Data collection of Test Sites (WP1 Task 1 and 2): collection of surface and sub-surface deformation (*in situ* and SAR data) and of meteorological/climate time series
- Design of a database (WP1 Task 4): implementation of a database to storage of the collected time series

WP1 – Task 1, 2

Data collection of Test Sites

NextData, Aula Bisogno CNR, Roma, 3-4 Giugno 2014

WP1 – Task 1,2

Ground deformation time series of Test Sites searching activity

• Literature analysis

Consiglio Nazionale delle Ricerche

- CNR-IRPI (Torino and Perugia) and CNR IREA internal data
- Agreement with Valle d'Aosta Region for SAR dataset (ERS and RADARSAT)
- Agreement with Altamira Information for SAR dataset (ERS and ENVISAT dataset provided by Terrafirma Project)
- ARPA Piemonte, "Rete Regionale dei Movimenti Franosi" (ReRCoMF)
- Piano Straordinario di Telerilevamento Ambientale for SAR dataset (ERS and ENVISAT)

WP1 – Task 1, 2

Meteorological/climate time series of Test Sites

- CNR-IRPI (Torino and Perugia) internal data
- Agreement with Valle d'Aosta Region (Centro Rete)
- ARPA Piemonte, "Banca Dati Meteorologica"

Consiglio Nazionale delle Ricerche

WP1 – Task 1, 2

Design and implementation of a Database for literature review

- Literature review to search surface and/or sub-surface ground deformations (including the products of SAR data and in situ measurements), and the meteorological/climate time series;
- Identification of the published correlations (DInSAR, in situ and meteo-climatic time series), at regional and local scale
- Setup of a dedicated database that classify the selected bibliography according to the previous descripted elements relevant to slope processes in different physiographic and climatic regions of the World

NextData, Aula Bisogno CNR, Roma, 3-4 Giugno 2014

ON GOING ACTIVITY

ID Article cat	egory Article topic Author Title Journal/Volume Ye	ar Article type Physiographic environme	nt Climatic zone Region	n Nation Lat_Long`	Test Sites Observation_period	Data Type Area extensio	n Direction Topograph	ical gradient variation Land-use
SAR	X-band SAX d Nottr Q. Asse Nat. Hazard Barth 20	🕅 Scientifi 🖓 ti Mm - Mh	Cfb 🥎 Upper	Central Spanish Ry I	Formigan Maggio-Ottobre 2008	cX-band Terra 47 km ²	WNW-ESE2500 1200	m a.s.l. Avest, fields
SAR	DInSAR; Lanc Herrera Multi-Remote Sensing o 20	12 Scientific an Mm Physiograp	Dhic Upper	TeCentral Spanish Pyl	ENPortalet ALOS PALSAP 2006	ALOS PALCAT km ²	WNW-ES(2500 - 1200	m a.s.l. Forest, fields
	Monitoring; Gi Herrera A lan Engineering Geolo 20	09 Scientific arti Mm environme	ent Upper	TeCentral Spanish Pyl	El Poltalet GB-SAR 5	bservation	za SW	Land-use
	SPN aloorithn Herrera Analy Landslides, 8, 195 2	11 Scientific arti Mm, Mh	Cfb Upper	TeCentra Spanish Py	El Portalet ERS 1-210		za SW	
Article	category Galvía-(DInsyLandsides, 11, 22 20	N Scientific arti Mm - Nh	Climatic zor	ne Spanish Pyl	El Retruso ALOS PALSAR 2006	ALOS PAL 47 km ²	WNW-ESE2500 - 1280	m a.s.h Forest, fields
	Article topic	13 Book chapte Mm - Mh	Cfb Cli	matic zone	<u>_\ \</u>	Data typ		· ·
SAR 📙	metodologia poortino mappin Proceedings of 20	06 Tenhnical Re Min - Mh	Dfe - Cfb					· · ·
SAR	H <mark>e Author na Vourn</mark> 20	11 Scientific arti Montrone terrigene	Cfb Arno R	iv Centra Clim	natic zone lages 200	3 Dati Radars 9130 km² 🟒	Area extensior	n · \ ·
SAR	SAR interferor Meisina Q	<mark>no o int</mark> ific arti Rilievi algini: Paeseggio glaci	iale ET - Dfe - Cfb - Piedm	or Northern Italy	A DI FROMAN	ppa feno 25.000 km ²	Direc	
ISM	Storiografia m Menotti S	cal Re Montagne terrigene	Cfb Umbria	Central Italy	Lat_Long	zometri -	vers	
ISM	Frane del Coll Servizio Consi - Jou	Irnal/Volume	Cfb Umbria	Central Italy	• 1979 Lat_	Long ·	-	Topographical
ISM	Monitoraggio (Servizio Monit - 20	12 Aconsider No Montagno torrigano	Cfb Umbria	Central Italy	- 1990 <mark>-2009</mark>	Dati monitoj -	-	variation
SAR	SAR; Different Calò F., Enhar Remote Sensing o 20	14 s Year	Cfb Umbria	Central Italy	lvancich Iar C-band ERS 1-2 e En	v C-band ERS -	•	•
ISM	Landslide; De Fastellir The A Appl. Geomat., 3, 20	11 Scientific arti Rilievo receiece isolate	Umbria	Central Italy	lvancich lar Geodetic monitoring s	i Geodetic m 50 ha	-	· ·
		Article t	ype					

WP1 – Task 4

Data Collection strategy

Database for the storage of the collected time series will be implemented using open source PostgreSQL and PostGIS SW

... Thank you for the Attention

francesca.ardizzone@irpi.cnr.it

NextData, Aula Bisogno CNR, Roma, 3-4 Giugno 2014

