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Abstract		
 
The estimate of the past and current conditions of snow resources in the Alpine region would require 
reliable, kilometre-resolution, observation-based gridded data sets. Despite the growing attention in 
the last years and the enhancements in the observation networks, the density of station measurements 
is still insufficient to develop a high quality reference data set based on in-situ measurements. 
However, additional sources of information, mainly from remote sensing, reanalyses and climate 
models can be employed to get an overview of the Alpine snow resources. 
�The activity carried out during the project aimed at gathering the available gridded snow water 
equivalent data sets from remote sensing, reanalyses and climate model simulations for the greater 
Alpine region (GAR) in order to explore their ability to provide a coherent view of the snow water 
equivalent distribution and climatology in the Alpine area.  
 
In addition to the analysis of the main satellite and reanalysis snow water equivalent products, we 
present here the evaluation of the simulations from the latest-generation regional and global climate 
models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment 
over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison 
Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow 
processes – near-surface air temperature and precipitation – against the observational data set EOBS. 
Then we calculate for each model the snow water equivalent climatology in the last 26 years of the 
historical period (1980-2005) and compare it with the remote sensing and reanalysis data sets 
previously considered. We critically discuss the model limitations in the historical period and we 
explore the potential of the models in providing reliable future projections of snow water equivalent. 
 
This analysis considering snow water equivalent climatologies in the Alpine region has been 
complemented with the quantification of snow water equivalent at small spatial scales (from the 
catchment to the local scales), in four selected areas in the Italian Alps. During the period 2015-2018, 
four intense field-measurement campaingns were performed, and the resulting measurements were 
analyzed and combined with advanced modelling tools to derive ultra-fine resolution snow water 
equivalent fields.   
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1. Introduction 
	

In	a	context	of	climate	change,	reliable	estimates	of	snowpack	in	the	mountains	and	its	changes	in	
time	 are	 essential	 to	 develop	 management	 and	 adaptation	 strategies.	 Detailed	 studies	 on	 the	
impacts	of	global	warming	in	snow-dominated	regions	are	necessary	for	an	informed	management	
of	water	 resources	 and	 to	 preserve	 essential	 ecosystem	 services	 for	millions	 of	 people	 living	 in	
downstream	 areas.	 The	 density	 of	 surface	 stations	 measuring	 snow	 is	 currently	 insufficient	 to	
develop	 a	 reliable	 gridded	 snow	water	 equivalent	 dataset	 based	 on	 in-situ	measurements,	 thus	
calling	for	the	use	of	alternative	sources	of	information	on	snow	mass,	such	as	those	derived	from	
remote	sensing	observations	and	reanalyses	(Mudryk	et	al.,	2015).		
	
Satellite	measurements	have	been	 shown	 to	provide	a	 reliable	picture	of	 the	global	 snow	cover	
extent	at	few	hundred	meters	of	spatial	resolution	(Brown	et	al.,	2010;	Hall	and	Riggs,	2007),	while	
the	estimation	of	snow	depth	and	snow	water	equivalent	 from	satellite	 is	 typically	performed	at	
spatial	scales	of	25	km	and	is	more	challenging	(Salzmann	et	al.,	2014).	Global	reanalyses	provide	
snow	water	 equivalent	 fields	 at	 horizontal	 resolutions	 that	 are	 comparable	 (30	 km	 in	 the	 zonal	
direction)	or	coarser	than	satellite	products.	Some	reanalyses,	such	as	ERA-Interim	(Dee	et	al.,	2011)	
and	NCEP-CFSR	(Saha	et	al.,	2010),	assimilate	surface	snow	depth	measurements	and	satellite	snow	
cover	extent	while	others,	such	as	MERRA	(Rienecker	et	al.,	2011)	and	20CR	(Compo	et	al.,	2011),	
are	not	constrained	by	measurements	and	thus	rely	on	the	capability	of	their	land-surface	model	
component	to	estimate	snow	fields.		
	
To	date,	 few	studies	have	 investigated	 the	accuracy	of	 satellite-based	and	reanalysis	 snow	water	
equivalent	 (SNW)	 datasets	 against	 available	 observations,	 and	 very	 little	 is	 known	 on	 their	
performance	in	mountain	areas.		
	
In	 the	 frame	of	 the	NextData	 project,	 in	 the	 following	we	 first	 review	 the	 available	 snow	water	
equivalent	(SNW)	datasets	and	quantitatively	assess	the	uncertainties	in	the	estimation	of	the	snow	
water	equivalent	 in	 the	Alpine	environment.	We	consider	global	SNW	gridded	datasets	obtained	
from	satellite	and	reanalysis	data	and	we	explore	how	they	represent	the	snow	climatology	over	the	
Greater	Alpine	Region	(GAR,	4–19°E,	43–49°N).	Based	on	this	analysis,	we	discuss	the	performances	
of	state-of-the-art	SNW	products	in	this	orographically	complex	area	and	we	provide	an	estimate	of	
the	inter-dataset	spread	in	the	Alps.		
	
Then,	these	results	are	used	as	a	reference	for	evaluating	the	state-of-the-art	climate	models.	We	
consider	 the	models	 participating	 in	 the	 two	major	 coordinated	 experiments:	 CMIP5,	 providing	
global	 simulations	 at	 spatial	 resolution	 on	 the	 order	 of	 100	 km	 on	 average,	 typically	 used	 as	
boundary	and	lateral	conditions	for	regional	climate	simulations,	and	EURO-CORDEX,	providing	high-
resolution	regional	simulations,	on	the	order	of	10	km,	over	Europe.	For	each	of	the	36	GCMs	and	5	
RCMs	listed	in	Tables	1	and	2	we	assess	the	ability	to	represent	(i)	the	main	drivers	of	snow	processes,	
i.e.,	 surface	 air	 temperature	 and	 precipitation,	 compared	 to	 the	 observational	 data	 set	 EOBS	
(Haylock	et	al.,	2008),	and	(ii)	the	snow	water	equivalent	climatology	compared	to	the	ensemble	
mean	 of	 the	 reference	 satellite	 and	 reanalysis	 data	 sets.	 We	 discuss	 the	 differences	 in	 the	
representation	of	snow	relevant	variables	in	the	different	model	simulations.	 
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Table 2 EURO-CORDEX regional climate models providing ERA-Interim-driven runs for the snow 
water equivalent variable at 0.11◦ spatial resolution considered in this study. For each of model we 
also report the land-surface model (LSM), the number of available GCM-driven runs and the 
reference (from Terzago et al., 2017). 

	
The	complex	orography	of	the	area,	shown	in	Fig.	1a,	and	the	heterogeneous	pattern	of	steep	slopes	
and	 valleys	 hamper	 the	 representation	 of	 climate	 features	 from	 both	 an	 observational	 and	 a	
modelling	point	of	view.	As	an	example,	Fig.	1b	points	out	how	the	topography	is	represented	in	the	
1	 km	 GLOBE	 digital	 elevation	model	 (Hastings	 et	 al.,	 2000),	 in	 the	 CORDEX	 ERA-Interim-driven	
regional	climate	models	and	in	the	CMIP5	global	climate	models,	in	terms	of	median,	5th	and	95th	
percentiles	of	the	distribution	of	elevations.	The	median	elevation	is	well	reproduced	by	all	models	
while	the	lowest	and	highest	elevations	are	progressively	cut	out	as	the	model	spatial	resolution	
coarsens.	While	global	 climate	models,	 including	 those	with	 the	 finest	 spatial	 resolution,	do	not	
properly	 take	 into	 account	 elevations	 above	 1500	m	 a.s.l.	 in	 the	 GAR,	 RCMs	 are	 closer	 to	 the	
expected	real	values.	The	limitations	of	CMIP5	models	have	to	be	considered	when	analysing	GCM	

Table 1: Snow water equivalent data sets, including remote sensing 
products, reanalyses, CMIP5 global climate models used in the study, with 
the corresponding land-surface model (LSM, when it applies) and the 
spatial/spectral horizontal resolution (from Terzago et al., 2017). 
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outputs	over	mountain	areas,	since	the	world	reproduced	by	such	coarse-scale	models	has	a	smooth	
orography	and	simplified,	or	highly	parameterized,	physical	processes. 
	

	
	
	
	
  

Figure 1: (a) Orography of the greater Alpine region (4–19◦ E; 43–
49◦ N) as in the GLOBE 1 km digital elevation model (DEM). (b) 
The 95th (dash-dotted), 50th (dashed) and 5th (dash-dotted) 
percentiles of the elevation distribution in the DEM compared to the 
corresponding values obtained from the CORDEX and CMIP5 
model orographies. RCM and GCM models are ordered along the 
x-axis from finest to coarsest spatial resolution. RCMs and GCMs 
are separated by a vertical dashed line (from Terzago et al., 2017). 
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2. Snow	water	equivalent	in	satellite	products	and	reanalyses	
	
We	present	the	spatial	distribution	of	snow	water	equivalent	in	satellite	products	and	reanalyses,	
hereafter	 referred	 to	 as	 the	 reference	 data	 sets,	 and	 we	 evaluate	 the	 differences	 among	 the	
reanalyses	in	relation	to	possible	biases	in	the	meteorological	forcing.	
	

 
Figure 2 Multiannual mean (1980–2005) of the DJFMA average (a) air temperature, (b) total 
precipitation from EOBS observational datasets and (c) snow water equivalent from NSIDC-SNW. 
Panels from (d) to (r) represent the bias of HISTALP, AMSR-E and reanalyses with respect to EOBS 
and NSIDC-SNW data sets respectively (from Terzago et al., 2017). 
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Figure	 2	 shows	 the	 multiannual	 mean	 (1980–2005)	 of	 near-surface	 air	 temperature	 (TAS),	
precipitation	 (PR)	 and	SNW	averaged	 (or	 accumulated	 in	 the	 case	of	PR)	over	 the	months	 from	
December	to	April	(DJFMA).	In	order	to	facilitate	the	comparison	among	the	various	data	sets,	we	
present	the	differences	(or	percent	biases)	with	respect	to	a	given	data	set,	namely	EOBS	for	TAS	
and	PR	and	NSIDC-SNW	for	SNW.	NSIDC-SNW,	is	in	fact	available	for	a	longer	period	(1980–2005)	
than	the	other	satellite	product,	AMSR-E	(2003–2011).	All	data	sets	are	conservatively	remapped	
onto	a	regular	0.25°	resolution	grid.	Biases	are	calculated	over	the	period	1980–2005	except	 for	
AMSR-E,	 for	 which	 the	 period	 of	 overlap	 with	 the	 reference	 data	 set	 is	 shorter,	 2003–2007.	
Compared	to	EOBS,	the	alternative	observational,	high-resolution	climatology	from	HISTALP	(Fig.	
2d–e)	presents	a	similar	temperature	distribution,	drier	conditions	at	high	elevations	and	wetter	
conditions	at	low	elevations.	This	comparison	is	reported	to	highlight	the	fact	that	uncertainties	are	
larger	 in	 precipitation	 than	 in	 temperature	 estimates,	 especially	 in	 mountain	 areas,	 and	 also	
observational	data	sets	can	exhibit	biases	with	respect	to	each	other,	which	makes	it	even	difficult	
to	define	a	ground	truth	or	reference	against	which	to	compare/validate	other	data	sets.	
	
Focusing	on	 the	snow	water	equivalent	distribution,	 the	NSIDC-SNW	climatology	 (Fig.	2c)	 shows	
maximum	values	of	about	50	kg	m−2	over	the	western	Alps	and	70	kg	m−2	over	the	eastern	Alps.	If	
we	consider	the	other	satellite	and	reanalysis	products	we	obtain	a	rather	heterogeneous	picture.	 
	
AMSR-E	(Fig.	2f)	presents	higher	values	in	the	western	Alps	and	lower	values	in	the	eastern	Alps	
compared	to	the	NSIDC	SNW.	CFSR	(Fig.	2g–i)	shows	TAS	and	PR	patterns	that	are	similar	to	EOBS	
over	the	Alpine	ridge	and	a	SNW	distribution	that	is	similar	to	NSIDC-SNW.	The	similarity	in	the	SNW	
range	 of	 variability	 is	 probably	 due	 to	 the	 fact	 that	 both	 products	 integrate	 the	 Special	 Sensor	
Microwave	Imager	(SSM/I)	data	but	to	different	extents.	NSIDC-SNW	is	specifically	derived	from	the	
Special	Sensor	Microwave	Imager	(SSM/I)	data.		
	
The	CFSR	snow	output	 is	mainly	based	on	the	Noah	land-surface	model	first	guess;	A	daily	snow	
analysis	based	on	several	 inputs,	 including	the	Special	Sensor	Microwave	Imager	(SSM/I)	data,	 is	
used	to	constrain	the	model	first	guess	(Meng	et	al.,	2012).	The	CFSR	snow	depth/SNW	is	limited	in	
the	upper	and	lower	boundaries	by	the	snow	analysis	(it	cannot	be	larger	than	twice	and	lower	than	
half	the	snow	analysis)	but	the	temporal	evolution	of	snow	depth	and	SNW	is	determined	by	the	
Noah	model.	As	a	consequence,	the	two	SNW	data	sets	lie	in	similar	ranges	of	variability,	but	except	
for	this	feature	they	can	be	considered	independent.		
	
The	MERRA	Reanalysis	(Fig.	2j–l)	shows	a	thicker	snowpack	with	respect	to	NSIDC-SNW,	especially	
over	the	Western	Alps,	as	well	as	compared	to	AMSR-E.	The	MERRA	behaviour	can	be	explained	by	
a	cold	bias	over	that	area,	partly	compensated	by	drier	conditions	over	the	Alpine	peaks.		
	
ERA-Interim/Land	 (Fig.	 2m–o)	 shows	 the	 largest	 SNW	 values,	with	 peaks	 exceeding	NSIDC-SNW	
values	by	more	 than	200	 kg	m−2.	 The	 SNW	bias	 is	 not	 directly	 explainable	 in	 terms	of	 biases	 in	
temperature	 and	 precipitation,	 which	 indeed	 go	 towards	 the	 opposite	 direction	 (warmer	 and	
slightly	 drier	 with	 respect	 to	 EOBS).	 This	 result	 suggests	 that	 the	 high	 SNW	 values	 of	
ERAInterim/Land		can	be	attributed	to	the	snow	scheme	in	use.	 
	
20CR	(Fig.	2p–r)	shows	the	lowest	SNW	values.	Owing	to	its	coarse	spatial	resolution,	20CR	presents	
a	warm	and	dry	bias	at	high	elevations	and	a	cold	and	wet	bias	at	low	elevations,	which	in	turn	result	
in	 low	 snow	 accumulation	 and	 shallow	 snowpack	 over	 the	 mountain	 range.	 These	 simplified	
patterns	 can	 presumably	 be	 ascribed	 to	 an	 excessively	 smooth	 orography	 and	 highlight	 the	
limitations	of	the	20CR	reanalysis	in	the	representation	of	snow	processes	in	mountain	areas. 
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This	analysis	provides	a	quite	heterogeneous	picture	of	SNW	and,	despite	the	considerations	on	the	
biases	found	in	the	climatic	drivers,	at	the	time	being	it	is	not	possible	to	ultimately	define	which	
product	is	closest	to	reality	over	the	full	GAR	domain.	For	further	analysis	we	disregard	the	20CR	
reanalysis	owing	 to	 its	poor	performance	 in	 this	orographically	 complex	 region	and	 the	AMSR-E	
satellite	product	for	its	short	period	of	availability.	We	thus	consider	as	reference	the	mean	of	the	
other	four	data	sets,	 i.e.	NSIDC	SNW,	CFSR,	MERRA	and	ERA-Interim/Land	reanalyses.	This	multi-
reference	mean	(MRM)	 is	calculated	after	conservatively	remapping	all	 the	data	sets	 to	the	0.7◦	
longitude	ERA-Interim/Land	grid. 
	

	
3. 	Snow	water	equivalent	in	global	climate	models		

 
Global	climate	models	clearly	have	too	coarse	spatial	resolution	to	properly	represent	snowpack	
characteristics	in	mountain	regions.	However,	it	is	interesting	to	evaluate	them	in	the	Alpine	area	at	
least	in	terms	of	temperature	and	precipitation	biases	with	respect	to	observations	owing	to	the	
fact	that	such	models	provide	boundary	and	forcing	conditions	to	regional	climate	simulations.		
	
We	analyze	in	detail	the	DJFMA	TAS,	PR	and	SNW	climatologies	provided	by	CMIP5	global	climate	
models	with	 spatial	 resolution	equal	 to	or	 finer	 than	1.25°	 (Fig.	3);	 coarser	 resolution	GCMs	are	
discussed	further	in	Sect	5.	CMIP5	model	biases	with	respect	to	EOBS	and	NSIDC	SNW	references	
(Fig.	2a–c)	are	shown	Fig.	3.	The	comparison	period	is	1980–2005.	Of	the	four	CESM-family	models,	
namely	 CESM1-CAM5,	 CESM1-BGC,	 CESM1-	 FASTCHEM	 and	 CCSM4,	 three	models	 present	 very	
similar	 climatologies	 so	 here	we	 consider	 only	 one	 of	 them,	 CESM1-	 BGC,	which	 is	 taken	 to	 be	
representative	of	CESM1-	FASTCHEM	and	CCSM4.		
 
GCMs	with	spatial	resolution	equal	to	or	finer	than	1.25°	show	snow	amounts	which	are	comparable	
to	those	of	the	reference	data	sets	over	the	greater	Alpine	region.	Compared	to	NSIDC-SNW,	the	
models	CMCC-CM,	EC-Earth	and,	to	a	smaller	extent,	MRI-CGCM3	and	CESM1-CAM5,	show	thicker	
snowpack	at	the	northern	slope	of	the	Alps	and	in	Switzerland.	A	common	feature	of	all	data	sets	is	
a	shallower	snowpack	over	the	eastern	Alps,	at	the	border	between	Italy	and	Austria.	This	spatial	
pattern,	characterized	by	an	east–west	gradient,	with	shallower	snowpack	in	the	eastern	Alps	and	
thicker	snowpack	in	the	western	Alps,	more	closely	resembles	that	provided	by	the	AMSR-E	satellite	
product	rather	than	that	provided	by	NSIDC-SNW.	
	
BCC-CSM1-1-M	 and	 CESM1-BGC	 show	 shallower	 snowpacks	 than	 NSIDC-SNW,	 and	 higher	
temperatures	with	respect	to	the	observational	data	sets.	In	these	cases,	the	warm	bias	in	the	model	
can	explain	a	 less	abundant	snowpack.	From	this	analysis,	 the	precipitation	bias	over	 the	Alpine	
ridge	between	the	different	high-resolution	GCMs	seems	to	be	comparable.	In	fact,	GCMs	generally	
tend	to	a	slight	underestimation	of	winter	precipitation	at	the	ridges	and	to	an	overestimation	at	
lower	altitudes.	This	uniform	behaviour	in	the	precipitation	pattern	suggests	that	temperature	can	
be	the	leading	cause	of	biases	in	the	estimation	of	surface	snow	water	equivalent.	
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Figure 3 DJFMA (first column) air temperature, (second column) total precipitation and (third 
column) snow water equivalent biases of the CMIP5 global climate models with spatial resolution 
equal to or finer than 1.25◦longitude with respect to the EOBS and NSIDC-SNWclimatologies 
reported in Fig. 2a, b, c (from Terzago et al., 2017) 
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4. SNW	in	regional	climate	models		
	
In	this	section	we	evaluate	the	outputs	of	the	EURO-CORDEX	regional	climate	model	experiments	
providing	the	highest	resolution	climatesimulations	currently	available	for	the	European	domain. 
	
For	simulating	the	past	climate,	ERA-Interim	driven	simulations	can	be	used,	while	for	projecting	
future	evolution	of	snow	water	equivalent	GCM-driven	simulations	are	necessary.	We	evaluate	both	
products	in	the	following.				
	

 
Figure 4 As in Fig. 3 but for the CORDEX ERA-Interim-driven RCM simulations, averaged over the 
period 1990–2005 (from Terzago et al., 2017). 
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Figure	4	shows	the	biases	of	ERA-Interim-driven	regional	climate	model	DJFMA	TAS	as	well	as	PR	
and	SNW	climatologies	with	respect	to	the	EOBS	and	NSIDC-SNW	references,	all	averaged	over	the	
common	period	1990–2005.	All	RCMs	show	SNW	amounts	several	hundreds	of	kg	m−2	larger	than	
any	other	 reference	data	 set	 (Fig.	 2)	 at	 the	mountain	 ridge	 and	 lower	 values	 at	 low	elevations.	
Extremely	high	values	(shown	in	black)	are	not	reliable	as	they	correspond	to	areas	of	continuous	
snow	accumulation	and	no	melting,	possibly	areas	masked	as	glaciers	in	the	models.	Such	grid	points	
show	artificially	high	positive	trends,	which	can	be	considered	to	be	erroneous,	and	they	have	to	be	
discarded	from	the	analysis.	Despite	these	details,	RCM	snow	estimates	are	much	higher	than	those	
provided	by	the	reference	data	sets,	and	these	high	values	can	be	related	to	the	fine	representation	
of	the	orography	that	allows,	in	principle,	for	lower	temperatures	in	high	mountain	areas	that	are	
not	 represented	 in	 coarse-scale	 reanalyses,	 for	 increased	 solid	 precipitation	 and	 for	 longer	
snowpack	duration.	In	some	cases,	the	large	SNW	values	in	RCMs	can	be	partly	explained	by	cold	
biases	(RACMO22E,	ALADIN53)	or	wet	biases	(HIRHAM5)	with	respect	to	the	observations.	In	other	
cases	 (CCLM4-8-17),	 despite	 remarkable	 biases	 in	 some	 parts	 of	 the	 domain,	 the	 atmospheric	
forcings	in	correspondence	of	the	mountain	ridge	are	in	better	agreement	with	observations	and	
they	do	not	show	relevant	deviations	from	the	reference	climatologies,	so	the	differences	have	to	
be	attributed	to	the	snow	scheme	in	use	and/or	to	the	finer	representation	of	the	topography.	From	
the	 analysis	 of	 RCMs	 we	 can	 conclude	 that	 higher	 spatial	 resolution	 allows	 areas	 of	 snow	
accumulation	 to	 be	 better	 separated	 and,	 consequently,	 to	 reproduce	 higher	 snow	maxima	 in	
correspondence	of	mountain	peaks.	 
	
For	 the	 CCLM4-8-17	 and	REMO2009	models,	which	 display	 no	 issues	 in	 the	 snow	accumulation	
trends,	 we	 also	 investigated	 the	 GCM-driven	 simulations	 (Table	 2).	 GCM-driven	 CCLM4-8-17	
climatologies	 have	 a	 stronger	 negative	 temperature	 bias	 (CNRM-CM5,	 EC-Earth,	 HadGEM2-ES)	
and/or	stronger	positive	precipitation	biases	(CNRM-CM5,	MPI-ESM-LR)	with	respect	to	the	ERA-
Interim-driven	runs	(Fig.	5).	These	features	result	in	thicker	snow	water	equivalent.	In	the	case	of	
MPI-ESM-LR-driven	REMO2009	the	temperature	bias	is	comparable	while	the	precipitation	bias	is	
larger	 than	 for	 the	ERA-Interim-driven	runs.	 In	conclusion,	GCM-driven	RCM	simulations	 tend	to	
inherit	the	biases	already	present	in	the	driver	GCM	and	to	reflect	them	in	SNW	fields. 
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Figure 5 Biases of the GCM-driven CCLM4 and REMO2009 DJFMA surface air temperature, 
precipitation and snow water equivalent climatologies with respect to the reference datasets EOBS 
and NSIDC Global SNW, over the period 1980-2005 (from Terzago et al., 2017) 
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5. Global	view	of	SNW	gridded	products 
 
In	this	section	we	provide	a	comprehensive	view	of	all	the	previously	considered	SNW	gridded	data	
sets.	The	similarity	of	the	SNW	climatologies	is	quantified	using		 Taylor	 diagrams	 (Taylor,	 2001).	
Figure	6a	compares	the	spatial	distribution	of	the	DJFMA	snow	water	equivalent,	averaged	over	the	
period	1980–2005,	for	the	multi-reference	mean	(MRM,	mean	of	the	four	reference	data	sets	CFRS,	
MERRA,	ERA-Interim/Land	and	NSIDC-SNW)	to	which	all	other	data	sets	are	compared;	the	multi-
model	mean	(MMM),	mean	of	all	36	CMIP5	models;	the	multi-model	mean	of	the	CMIP5	models	
with	spatial	 resolution	equal	to	or	 finer	than	1.25◦	 (MMM-HiRes,	as	 in	Terzago	et	al.,	2014);	 the	
individual	reference	data	sets;	and	the	individual	regional	and	global	climate	models. 
	

  
Figure 6 Taylor diagrams of the multiannual mean (1980–2005) of the DJFMA average snow water 
equivalent as described by climate models are kept at their original resolution and the reference 
data sets are remapped onto the grid of each model. Points included in the rectangles correspond to 
models highlighted with ** in the legend (from Terzago et al., 2017). 
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First	we	compare	data	sets	built	on	different	coordinate	reference	systems	and	with	different	spatial	
resolutions	by	reprojecting	all	remote	sensing	products,	reanalyses	and	climate	model	outputs	onto	
a	 common	 grid,	 specifically	 the	 ERA-Interim/Land	 0.7◦	 longitude	 grid.	 Figure	 6a	 provides	 an	
evaluation	of	the	individual	data	sets	with	respect	to	the	multi-reference	mean,	all	resampled	on	
the	same	0.7◦	grid.	 
	
Reference	data	sets	are	generally	highly	correlated	with	the	MRM	(R	>	0.85	for	all	data	sets	except	
the	 coarsest	 20CR).	 This	 feature	 is	 related	 to	 the	dependence	of	 the	 snow	water	 equivalent	on	
topography;	i.e.	these	data	sets	represent	larger	SNW	values	at	higher	altitudes.	Satellite	products	
and	the	CFSR	reanalysis	are	very	close	to	each	other,	with	lower	variance	with	respect	to	the	MRM.	
The	MERRA	reanalysis	is	close	to	the	MRM,	with	comparable	standard	deviation	and	small	RMSE.	
The	 ERA-Interim/Land	 and	 20CR	 reanalyses	 show	 opposing	 behaviours	 in	 terms	 of	 normalized	
standard	deviation,	i.e.	very	high	and	very	low	respectively.	ERA-Interim/Land	has	a	wider	statistical	
dispersion	of	SNW	values	and	higher	SNW	peaks,	clearly	reflected	in	Fig.	2o,	while	20CR	has	a	narrow	
range	of	SNW	values	and	a	smooth	SNW	pattern	(Fig.	2r).		
	
Of	the	two	RCMs	considered,	REMO2009	is	in	better	agreement	with	the	MRM	in	terms	of	RMSE	
and	normalized	standard	deviation.	CCLM4-8-17	has	a	large	normalized	standard	deviation,	which	
is	 comparable	 to	 that	 found	 in	 ERA-Interim/Land.	All	GCM-driven	RCM	simulations	 show	higher	
variance	with	respect	to	the	corresponding	ERA-Interim-driven	runs.	 
	
For	GCMs,	an	important	feature	emerging	from	this	analysis	is	that,	on	average,	the	ensemble	mean	
of	the	high	resolution	models	performs	better	 in	terms	of	standard	deviation,	root	mean	square	
difference	and	pattern	correlation,	with	 respect	 to	 the	ensemble	mean	of	all	CMIP5	GCMs.	This	
result	highlights	the	importance	of	the	horizontal	resolution	in	simulating	snowpack	spatial	patterns.	 
	
An	alternative	approach	has	been	devised	to	provide	a	fair	comparison	of	the	GCMs.	Each	GCM	is	
compared	 to	 the	MRM	after	 having	 conservatively	 remapped	 each	 reference	 data	 set	 onto	 the	
individual	GCM	grid,	so	that	the	reference	is	reshaped	each	time	according	to	the	model	resolution.	
This	approach	allows	for	a	fair	evaluation	of	each	GCM	on	its	own	grid,	regardless	of	its	resolution.	
For	the	sake	of	clarity,	we	present	the	results	relative	to	this	approach	by	separately	plotting	the	
models	divided	in	two	groups,	one	with	resolutions	finer	or	equal	than	1.25°	and	one	with	coarser	
resolutions	(Fig.	6b).	 
	
The	clustering	based	on	spatial	resolution	reveals	that	coarse	resolution	models	generally	have	very	
high	or	very	low	standard	deviation	(please	note	that	the	CNRM-CM5	model	lays	outside	the	range	
of	the	plot).	In	such	circumstances	the	ensemble	mean	of	the	models	is	the	result	of	compensating	
extreme	behaviours,	and	 it	 should	be	considered	with	caution.	On	 the	contrary,	 individual	high-
resolution	GCMs	are	generally	closer	to	the	MRM	and	do	not	exhibit	extreme	features,	constituting	
a	more	homogeneous	ensemble.		
	
Figure	 6	 provides	 information	 on	 the	 similarity	 of	 SNW	 climatologies	 and,	 indirectly,	 qualitative	
information	on	the	degree	of	interdependency	of	the	models	belonging	to	the	same	“family”.	For	
example,	 among	 the	 previously	 mentioned	 four	 CESM-family	 models,	 namely	 CESM1-CAM5,	
CESM1-BGC,	CESM1-FASTCHEM	and	CCSM4,	three	models	show	a	high	degree	of	similarity	(Figure	
6b).	In	the	calculation	of	the	MMM-HiRes,	in	order	to	limit	the	bias	related	to	the	interdependency	
of	the	models,	out	of	these	three	similar	models	we	retained	only	one,	CESM1-BGC.	We	use	the	
term	“high-resolution	GCMs”	to	indicate	only	the	following	six	models:	CMCC-CM,	ECEarth,	MRI-
CGCM3,	BCC-CSM1-1-M,	CESM1-BGC	and	CESM1-CAM5.	These	models	were	 further	analysed	 in	
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terms	 of	 annual	 cycle	 of	 snow	 water	 equivalent	 during	 the	 historical	 period	 compared	 to	 the	
reference	datasets	and	in	terms	of	projected	changes	in	the	annual	cycle	at	mid	and	end	21st	century	
in	RCP8.5	scenario	in	a	specific	study	(Terzago	et	al.,	2017). 
	
	
Conclusions	
	
The	results	of	the	analysis	show	that	the	time-averaged	spatial	distribution	of	snow	water	equivalent	
is	reproduced	quite	differently	by	the	different	remote	sensing	and	reanalysis	datasets,	which	in	fact	
exhibit	 a	 large	 spread	 around	 the	 ensemble	 reference	 mean.	 The	 information	 on	 snow	 water	
equivalent	climatology	provided	by	these	datasets	is	affected	by	large	uncertainties,	thus	it	can	be	
considered	only	qualitatively.		
	
The	analysis	of	EURO-CORDEX	regional	climate	model	simulations	elucidates	the	extent	to	which	
horizontal	 resolution	 can	 affect	 the	 representation	 of	 the	 snow	 processes	 and	 climatology	 in	
mountain	areas.	The	results	from	the	currently	available	simulations	at	0.11°	resolution	(five	ERA-
Interim-driven	RCMs)	show	a	much	thicker	average	snowpack	over	the	alpine	ridge	and	shallower	
snowpack	at	low	elevations	with	respect	to	the	reference	data	set	and	global	climate	models.	This	
behaviour,	has	been	related	to	the	finer-resolution	of	RCM	with	respect	to	GCMs	and	reanalyses.	 
	
The	present	work	highlights	how	surface	heterogeneity	at	fine	scale	is	difficult	to	represent,	both	for	
remote	sensing	products,	reanalyses	and	climate	models.	Specifically,	this	study	contributes	to	the	
knowledge	on	Alpine	snowpack	status	and	changes	by	providing	a	picture	of	the	main	available	snow	
water	equivalent	products,	and	measuring	the	related	uncertainties	in	the	Alpine	environment.	The	
relative	 assessment	of	 the	 capability	of	 satellite-based products,	 reanalyses,	 RCMs	and	GCMs	 in	
reproducing	snowpack	features	provides	important	information	to	both	model	developers	and	to	
the	 community	 of	 users,	 allowing	 critical	 factors	 in	 the	model	 components	 to	 be	 identified	 and	
raising	awareness	of	the	strengths	and	limitations	of	the available	products.	
	
	
Data	availability.	All	the	data	sets	used	in	this	study	are	publicly	accessible	and	were	downloaded	
from	 the	 following	 websites:	 CMIP5	 and	 CORDEX	 model	 simulations,	 https://esgf-
data.dkrz.de/projects/esgf-dkrz/;	 NSIDC	 Global	 Snow	Water	 Equivalent	 climatology	 and	 AMSR-E	
products,	 https://nsidc.org/;	 CFSR	 reanalysis,	 https://rda.ucar.edu/;	 MERRA	 reanalysis,	
https://mirador.gsfc.nasa.gov/;	 ERA-Interim/Land	 reanalysis,	 http://apps.ecmwf.int;	 EOBS,	
http://www.ecad.eu;	HISTALP,	http://www.zamg.ac.at/histalp/. 
All	 the	 codes	 and	 the	 datasets	 produced	 for	 this	 deliverable	 are	 available	 upon	 request	 (email:	
s.terzago@isac.cnr.it). 
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SWE Inter-comparison

In a nutshell

• 186 SWE measurements with three different methods over a 1000 m2 surface, 34 snow
observers involved (fig. 1).

• Two observers tacking two SWE measurements on a snow pack under similar conditions
and using similar methods result in an average measurement error of 3% (fig. 4).

• A group of 17 couples of observers tacking SWE measurements along a 12-15 m linear
transect on a homogeneous snow pack results in an average measurement error of 7%
(fig. 4). The inter-operator variability (as high as 100 mm SWE, fig. 5), highlights the
need for further inter-comparisons aiming at the homogenization of sampling techniques.

• The measurement of a weighted average snow density according to homogeneous strata
(AINEVA method) leads to an estimation of SWE similar to that obtained by sampling
density at fixed heights in the snow pack (SWE method) (figg. 2 e 6).

• SWE measurements conducted by means of a snow corer (named EV sampler) lead to
an underestimation of SWE (figg. 2 e 6).
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SWE Inter-comparison

1 The data

Sampling size

Seventeen couples of observers were involved, for a total of 186 measurements. Among those,

84 measurements were taken by sampling snow density at fixed heights along the snow profile

(hereafter referred to as SWE method) and 84 by sampling snow density according to ho-

mogeneous snow strata (AINEVA method). 18 measurements were taken using a snow corer

named EV sampler. 3 plots were defined (A, B, and C where 76, 70 and 40 measurements

were taken, respectively) (Fig.1).

Figure 1: Number of measurements conducted with each method and on each plot
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SWE Inter-comparison

Averages across methods and plots

Figure 2 shows medians of SWE, snow depth (HS) and snow density (RHO) for the three

methods. The median for each method was calculated including measurements from all cou-

ples of observers. Error bar represents the mean absolute deviation (MAD). The coefficient

of variation (CV%) is also reported. The red line represents the median across all data. For

SWE, we observe much lower values for SWE as measured with the EV sampler compared

to other two methods. The within-method variability is similar across methods. The same

is true also for snow density (RHO). Since we cannot decide a priori which method performs

better, we assume that the global median is our ground truth.
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SWE Inter-comparison

Figure 2: Medians of SWE, HS and RHO across methods. Error bar represents the MAD. CV is calculated as MAD/median

* 100. The red line is the global median

Figure 3 is similar to fig. 2 for intra-plot variability. We observe lower snow depths in C,

but with higher snow densities. The two divergent behaviors of HS and RHO compensate

each other in SWE, which shows no spatial variability. However, CVs are higher between

plots that between methods.
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Figure 3: Medians of SWE, HS and RHO across plots. Error bar represents the MAD. CV is calculated as MAD/median *

100. The red line is the global median
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Sources of error

The experimental design allows to disentangle SWE variability associated to four different

factors: i) error with the couple of observers (observer), ii) variability between observers

(inter-observer), iii) spatial variability and iv) variability across methods. Figure 4 shows

the average error associated to each of the variability sources. Observer error was found to

be 2.5%. This indicates that under similar snow conditions and using the same method,

the same observer makes an average error of 2.5%. The probability distribution of observer

error suggest that in only few cases the observer-error is higher than 5%. The inter-observer

variability represents the largest source of error, around 7%. It is interpreted as the mean

variability across observations conducted by different observers in homogeneous conditions.

Figure 5 shows all SWE measurements split by plot and method. It is evident that inter-

observer variability is the largest source of error. Note however that spatial variability within

the same plot is assumed negligible along the 12-15 m transect that constitutes each plot,

which may be not the case. If so, we could be overestimating inter-observer variability.

Spatial variability between plots is minimal, whereas the variability due to the method is

the second source of error, and will be discussed later.
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Figure 4: Mean error (%) associated to each variability source and probability density of the errors. Red line represents the

median error
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Figure 5: All SWE measurements, split by plots and methods. Different colors indicate replicates from every couple of

observers.

Across-method and spatial variability

To test the hypothesis that different methods lead to different SWE estimates, and that

spatial variability is not negligible, we used a mixed effect model with method and plots as

fixed effects and observers as random effect. Results in fig. 6 show quantitatively what was
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already apparent by simply looking at the plots, i.e. EV driller results in significantly lower

SWE estimates, whereas there is no different among plots.

To further analyze the statistical model let’s look at the Anova table (fig. 7) showing the

effects of each factor on SWE. Method and plot effects were already discussed, but there is

also an interaction between method and plots, indicating that the effect of the method is

not the same across plots. Fig. 8 shows this feature. EV sampler shows lower medians in

plot A and B but not in C. Note however that the sampling size for C is much lower than

for A and B.
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Figure 6: Results of the mixed model. Bars are the same as in fig. 2. different letters indicate significant differences between

means.
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Figure 7: Anova table of the model. p-values lower than 0.05 indicate significant effect of the given factor. Last line

(method:plot) refers to the interaction between the two factors.

.
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Figure 8: SWE means as a function of method and plot

We showed that the three methods lead to different SWE estimations, namely EV sampler

results in a lower SWE estimate compared to the other two methods. Let’s now evaluate

whether any of the three methods lead to a SWE estimation statistically different from what

we defined as the ground truth (i.e. the median across all observations, SWE median = 286
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mm). The following table shows significance of a simple t-test. As expected, AINEVA and

SWE method do not differ from the ground truth, whereas the EV sampler method results

in an underestimation of the ground truth.

Figure 9: p-values of the t-test used to establish whether any method is significantly different from the ground truth. p-values

lower than 0.05 indicate a significant difference

General significance of results obtained

Our experiment offers interesting points of discussion, but it is worth remembering its lim-

itations. In order to test for inter-method variability we tried to exclude excessive spatial

variability by choosing a highly homogeneous site. Our results must therefore be extended

with caution to markedly different snow conditions (e.g. more complex topography, wide

range of snow depths and snow densities).

The unbalanced sample size between measurements conducted with AINEVA and SWE

methods compared to the EV sampler may suggest that the differences we found might be

an artifact. For this reason we conducted a re-sampling experiment, by randomly sampling
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a number of measurements recorded with AINEVA and SWE methods equal to the number

of samples taken with the EV method (n=18), to equal the sampling size (replicated 1000

times). Results show that in 99% of instances the conclusions would have been the same,

i.e. EV sampler leads to an average SWE lower than with the other two methods.
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2 Conclusion

In this filed inter-comparison, 186 SWE measurements were conducted on a relatively ho-

mogeneous, flat area of 1000 m2. Measurements were taken with three different methods.

We aimed at:

i) evaluate error of a single observer

ii) evaluate inter-observer variability

iii) evaluate variability between methods.

Results show that observer variability lead to an error lower than 3%, whereas variability

between different observers account for the largest source of error, 7%. Spatial variability

was found to be the lowest, 1%. SWE and AINEVA methods lead to the same estimate fo

SWE, whereas EV sampler results in an underestimate fo SWE.

We conclude that the high inter-observer variability observed points to the need for more

such inter-comparisons, in order to get reliable and homogeneous measurements.
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3 Supplementary

To have an overview on all measurements and not only on aggregated data, we show two

plots similar to fig. 5, but showing snow depths and densities as measured by all couples of

observers.

Figure 10: All RHO measurements (weighted average), split by plots and methods. Different colors indicate replicates from

every couple of observers.
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Figure 11: Same as before but for HS.
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Second SWE inter-comparison

In a nutshell

• 184 SWE measurements with two different methods on the sides of 4 cubes (each cube,
5-m side), 24 snow observers involved (fig. 1).

• 48 SWE measurements conducted in 8 points across a heterogeneous area (itinerant
campaign, fig 8).

• A couple of two observers tacking SWE measurements on a homogeneous snow pack
results in an average error of 3% (fig. 4).

• Twelve couples of observers measuring 4 homogeneous cubes result in an error of 10%
(fig. 4).

• The two methods (SWE method and EV sampler method) result in similar SWE esti-
mates

• In homogeneous conditions (snow depth ranging 1.20-1.50 m, spatial variability 7%), 3
sampling points are enough to properly characterize SWE in one area, either with SWE
and EV methods (fig. 7).

• In heterogeneous conditions (snow depth ranging 0.80 e 1.40 m, spatial variability 35%)
6 sampling points are needed to characterize SWE with EV method (fig.14)
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1 Sampling strategy

Sampling occurred in two ways: a) with a campaign based on intensive measurements on 4

cubes of 5-meter-side, hereafter referred to as sedentary campaign; b) an itinerant campaign

along a path, where 8 sampling points with markedly different snow depths were identified

and sampled. In both cases, two methods for SWE determination were used: the method

called SWE, where snow density was sampled at fixed heights in the snow pack with a 500

mL tube; and the EV method, with a vertical corer that allows an integrated sampling of

the whole snow pack.

2 Sedentary campaign

Sample size

Sedentary campaign was conducted around 4 cubes of 5 meters side. Twelve couples of ob-

servers took part to the experiment (184 measurements in total, 92 with the EV method and

92 with the SWE method) (Fig.1). Within each couple, one observer consistently conducted

measurements with SWE method and the other with the EV method. We can therefore test

also for the variability of one single observer. All couples conducted measurements in the

cubes A-C and only 10 of them took measurments at cube D.
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Figure 1: Number of measurements for each cube and method

Method and plot averages

Figure 2 shows medians of SWE, HS and RHO for the two methods. Error bar repre-

sents the mean absolute deviation (MAD). The coefficient of variation (CV%, calculated

as MAD/median x 100) is also included. The red line represents the general median. Me-

dian SWE as measured by the EV method is slightly higher than that measured by SWE

method. Furthermore, EV method leads to a higher variability (13%) compared to SWE

method (7%). The general median SWE is 393 mm and is considered the best estimate of

the ground truth.
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Figure 2: Medians of SWE, HS e RHO as a function of the method used. Error bar is the MAD. The red line is the general

median.

Figure 3 is as fig. 2 for the between-cubes variability. A significant different SWE was

found between cubes, ranging from 372 (cube B) to 424 mm (cube A).
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Figure 3: Medians of SWE, HS e RHO in the four cubes. Error bar represents the MAD. The red line is the general median.
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Error associated to the examined factors

The experimental design allows to disentangle the SWE variability associated to 4 differerent

factors: i) observer error, ii) inter-observer variability, iii) spatial variability, iv) variability

due to method. Figure 4 shows the median error associated to each of these variability

sources. The average error associated to a single observer is 2.3%, i.e. 9 mm SWE. The

inter-observer variability is the largest source of error, at 10%. This variability indicates the

error encountered by different observers sampling very similar snow packs.

Spatial variability between cubes is 7.4%, and variability across methods is 6.6%. Com-

pared to results obtained during the inter-comparison 2015, where couples were distributed

along a 12-15 m long transect, the conditions here are more homogeneous. Hence, the 10%

inter-observer error may be considered a good estimate of the variability between different

observers and we can exclude that unaccounted spatial variability is affecting the estimated

inter-observer variability, as it was argued after the 2015 inter-comparison.
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Figure 4: Error % associated to each variability source.
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Variability between methods and spatial variability

To test the hypothesis that different methods lead to different estimations of SWE, and that

spatial variability exists, we used a mixed effect model with method and plot (including

interactions) as fixed effects and observers as random effect. This model allows to single

out variability sources related to method, space, inter-observer and observer. Results in fig.

5 show that the small difference in SWE as measured by SWE mothod and EC method is

statistically significant. Also spatial variability is significant, with cube A having a larger

SWE compared to other plots.
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Figure 5: Results of the mixed effect model. Bars are the same shown in fig. 2. Different letters indicate significant differences

between the means.

As we have shown that the two methods result in slightly different estimations, we test

whether the means obtained by the methods differ from our general median, which we

consider the ground truth. The following table shows the results of the t-test of the method-

means against the ground truth. Both methods lead to an estimate that does not differ from

the ground truth. The fact that we find statistical differences between the two methods, is

9 Climate change unit



Second SWE inter-comparison

due to the high homogeneity of the data. In such conditions, minimal differences combined

with the high number of observations can lead to statistically different results. Anyway, the

important message is that both methods lead to a correct estimation of the ground truth.

Figure 6: p-values of the t-test used to compare method-means to the ground truth. p-values lower than 0.05 indicate a

significant difference between the means.

Re-sampling experiment

Previous sections demonstrate that: 1) both methods are robust and correctly estimate the

ground truth and (2) observer variability is low. In order to translate the experiment into

operational protocols it is worth asking: how much can we reduce the sampling effort without

loosing statistical power in properly determining the ground truth? We tried to answer this

question with a re-sampling technique, by randomly removing some observations and run

the statistical tests on randomly created subsets of the data. Results are than expressed in

probabilistic form.

Briefly, the procedure is the following:
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- The number of measurements to be sampled is defined (n of observations)

- We randomly sample from the complete dataset the n of observations for 1000 times

- We execute a t-test for each replication, to test whether the random subset differs from the

ground truth

- We express the number of significant /not significant t-tests in probabilistic terms.

Results are shown in fig.7. The graph shows the probability (%, x-axis) to obtain an SWE

estimate equal to the ground truth as a function of sample size (y-axis). Different colors

represent the two methods. Two and three samples are sufficient with the SWE method and

the EV method, respectively, to correctly estimate the ground truth at a 95% confidence

(a typical statistical threshold). In other words, in face of a homogeneous snow field 2-3

samples would give us a 95% probability of hitting the true SWE of that area.
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Figure 7: Results of the re-sampling experiment. Variation of the probability to obtain a correct estimate of the SWE as a

function of number of sampled included.

3 Itinerant campaign

To test the two methods under less homogeneous SWE conditions compared to the flat

snow field, we organized an itinerant campaign across different slopes and snow conditions.

Sampling was conducted in 8 points with the two methods. For each point one observation

was made with the SWE method (more time consuming) and 5 replicates with the EV
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method.

SWE medians for the 8 points are shown in fig 8. As expected, compared to the sedentary

campaign the spatial variability is higher. Similarly to the sedentary campaign, we calculated

the variability associated to the method (10%), comparable to the one observed in the

sedentary campaign, and the spatial variability (34%). Hence, we fulfilled the purpose to

capture more spatial variability. A surprising result, partially in contrast to the sedentary

campaign, is that EV method leads to lower SWE estimates compared to the SWE method.

We can hypothesize that a snow loss at the base of the EV corer could be responsible for

the discrepancy between the two methods.
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Figure 8: Median SWE, HS and RHO as a function of methods. Error bar is the MAD. The red line is the general mean.

In fig. 9 we show the median SWE observed at each of the 8 points. Along with the

general mean (red line), we also show the median of the sedentary campaign as a reference

(blue line). We observe that at each point the SWE median is lower compared to the flat

terrain of the sedentary campaign, because the flat morphology promotes snow accumulation

whereas the slopes of the itinerant campaign do not. The variability in SWE at the 8 points is
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a function of different snow depths (ranging 0.86-1.33 m), but also of different snow densities

(170-300 km/m3).
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Figure 9: Medians of SWE, HS and RHO across the 8 sampling points. The red line is the general mean. The blue line is the

mean of the sedentary campaign, for reference.

The mixed model on the itinerant campaign shows what was already apparent by simply
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looking at the bars. We observe a statistically significant difference across methods and in

space (fig. 10).

Figure 10: Results of the mixed model. Bars are the same as in fig. 8. Different letters denote significant differences between

the means.
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Re-samping experiment on the itinerant campaign.

Similarly to the sedentary campaign, we tried to estimate the minimum number of sampling

points required to quantify the ground truth.

In this case, however, we have to take into account that the 8 points are markedly different.

We therefore formulate two different cases.

a) we have to quantify the SWE at the scale of a small slope where we have settled our

8 sampling points. The ground truth will be represented by the general mean. In such

a heterogeneous landscape, how many points do we need to correctly quantify the ground

truth?

With a re-sampling analysis we progressively reduce sample size and calculate the prob-

ability to correctly estimate the ground truth. Results are shown in fig. 11. If we consider

a threshold of 95% confidence, 6 ore more samples (EV method) are needed to correctly

estimate the ground truth. This means that an observer can randomly distribute 6 sampling

points with the EV method to properly characterize the SWE at this slope scale.
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Figure 11: Re-sampling analysis: probability to correctly quantify the ground truth as a function of the number of sampling

points.

Across the 8 points we identified markedly different SWE conditions. To better exploit this

information, we could consider these 8 points as representative of diffeerent snow conditions.

In particular, we classified the points in 3 SWE-abundance categories 12. In fig 13 we show

that the three groups have different means.
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Figure 12: Average SWE in the 8 points of the itinerant campaign. Different colors show the classification according to SWE

abundance, in abundant (blue), average (red) and scarce (green).

20 Climate change unit



Second SWE inter-comparison

Figure 13: Average SWE for the three groups identified. Different letters indicate significant differences.

The question now is: how many samples do we need to be able to identify the differences

between these three groups? Again, with a re-sampling experiment we calculate the prob-

ability to be able to maintain the reciprocal differences between groups (fig. 14). For each

group we need a minimum of 6 observations to be able to preserve the variability observed

with the full dataset.
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Figure 14: Variation of the probability to have the same between-group differences observed with the whole dataset, as a

function of number of replicates for each of the three groups.

Results of the re-sampling suggest several operational implications on the use of the EV

method under heterogeneous conditions.

(1) To characterize a heterogeneous snow pack with snow depths ranging 80-130 cm, we

need to randomly select 6 distinct points.
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(2) If the objective is to characterize different situations in one area (e.g. with a clear sub-

area of snow accumulation, one of snow erosion, and one with intermediate conditions), it

is advisable to collect 6 samples for each of the sub-areas. In this case the observer could

identify the subareas by means of fast sampling of snow depths to identify the points where

the EV corer will be used.

(3) In heterogeneous conditions, we suggest that 6 is the optimal sampling size.
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4 Conclusions

In this inter-comparison we conducted 184 measurements of SWE on a homogeneous surface

taking advantage of the sides of 4 snow cubes (5 m per side). Moreover, 8 points were

sampled to describe a typical heterogeneous situation (48 samples in total). Measurements

were conducted with two different methods (SWE method and EV method)

Our objectives were:

i) evaluate variability (and error) of a single observer.

ii) evaluate variability (and error) between different observers.

iii) evaluate variability (and error) between methods.

iiii) evaluate the performance of EV method in heterogeneous conditions.

SWE and EV methods lead to similar SWE estimates.

In homogeneous conditions (hs ranging 1.20-150 m, spatial variability 7%), 3 sampling points

are sufficient to characterize SWE for the area with either method. In heterogeneous condi-

tions (hs ranging 0.80-1.40 m, spatial variability 35%), 6 points are required to characterize

SWE with the EV method. With a preliminary, fast survey of snow depths, sub-areas can

be identified, with different snow accumulation dynamics. For each of those area, 6 samples

are required to characterize SWE.
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In a nutshell

• 2707 snow depth (HS) measurements were conducted in the Goillet Basin (Valtournenche
Municipality): 6,3 km2, minimum elevation 2.527 m a.s.l., maximum elevation 3.480 m (Testa
Grigia).

• 36 snow observers involved, 16 measurement teams for snow depth, one team for snow density.

• 16 independent SWE simulations + one simulation with all sampling data (considered as
ground truth, fig. 2).

• Total SWE in the basin was estimated at 6.3 millions m3.

• The variability across simulations for single teams varies between -30 and +20% compared to
ground truth.

• Higher uncertainty in SWE estimation occurs in areas with less ground observations.

• The morphological parameters more influential on SWE distribution were those related to solar
radiation.
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1 Objectives 2017

After the comparison between different methods for SWE estimation under homogeneous snowpack

conditions (inter-comparisons 2015 and 2016), the 2017’s edition aimed at evaluating the impact

of widespread snow depth (HS) measurements on the water resource estimation for

hydro-electrical power production in a medium-sized alpine basin and in particular:

1) evaluate the impact on total basin SWE budget;

2) evaluate the impact on SWE spatial distribution.

3) refine current sampling protocols in the light of the results.

First objective is aimed at the quantification of the water resource directly responding to the

specific need of hydro-electrical power production. The second, more specific and methodological

objective consisted in the evaluation of the spatial distribution of SWE and in establishing which

factors lead to larger differences in SWE distribution. The third objective, practical and operational,

sought at improving the current sampling protocol.

2 Field work

Snow depth was sampled by 16 teams. Each team had two people, one directly sampling snow

depth, the other registering the measurement. For data acquisition, an ad hoc smart-phone app

(snowalp) was used, developed by ARPA VdA. This app allows to register snow depth associated

to geographic coordinates thanks to the GPS integrated into the smart-phone. Each team was

given a map with Goillet basin divided into 6 sectors (fig. 1). Each team was requested to visit

as many sectors as possible, following a sampling scheme based on their own experience and skills,

and sampling snow depth approx. each 100 m, with 250-300 measured points as target. Each team

was asked to sample maximum variability in terms of elevation, facing, slope, morphology (erosion
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vs accumulation areas), registering 0 values too in areas where snow was absent (if any).

Figure 1: Goillet basin with the 6 sectors.

3 SWE simulations

The model used by ARPA for the estimation of the spatial distribution of SWE is structured in 3

steps.

1) Collection of various snow depth and snow density measurements;

2) Calculation of point SWE;

3) Grid distribution of SWE by means of multiple regression with dem-derived variables (elevation,

slope, distance from mountain top, solar radiation, etc.) and subsequent spatialization of the resid-
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uals (regression-krieging).

The final product is a SWE map for the whole basin at 500 m resolution.

Snow density

One team conducted snow density measurements coupled with a TDR measurement at 6 points.

The resulting values were averaged and a basin-average snow density (280 kg m3, SD 39 kg m3) was

used as model input.

Snow depth

Figure 2 shows the distribution of measured HS. More than 2770 measurements were conducted

across the whole Goillet basin. Some areas were not sampled or partly sampled for security reasons

(glacier fields, or avalanche release area), or logistic reasons (the flat area between the two lakes

was flat and therefore excluded from the study area).
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Figure 2: Spatial distribution of snow depth measurements

Figure 3 shows the same points as in fig 1, with color mapped on snow depth, in order to highlight

the spatial distribution of snow depths.

5 Climate change unit



Figure 3: Spatial distribution of snow depth measurements with color mapped on snow depth values.

Figure 4 shows the variability of snow depth with a boxplot for each team. Median HS equals

158 cm, with a minimum of 0 and a maximum of 500 cm. This is not surprising, since it include the

whole basin’s variability. However, we also observe a significant inter-team variability by looking at

the respective medians, that vary by more than 100 cm. For example, team 11 measured a median

snow depth of 100 cm whereas team 10 scored a median of 200 cm, due to the different sampling
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paths they have chosen.

Figure 4: Boxplots of snow depth for each team. Red line is the grand median.
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Spatial representativeness of sampling paths

One uncontrolled feature of the sampling scheme was the path choosen by each single team. By

comparing morphological characteristics of the whole basin to those sampled during the campaign

we can evaluate how representatively the morphology was sampled by the teams. This can have

important consequences on the spatialisation in view of the fact that dem-derived fields are used to

distribute SWE in space. Figure 5 shows the frequency distribution of some morphological variables

(elevation, total radiation, concavity/convexity and slope) for the sampling points and for the whole

basin. Radiation, slope, concavity/convexity on sampled points show a very similar distribution

compared to the whole basin. For elevation, sampled points are distributed somewhat higher

than the elevation range of the entire basin. Given that globally morphology representativeness is

satisfactory, we can look at the same feature with a density distribution for each team (figs 6 and 7).

For elevation, for example, it is clear that teams 9 and 14 preferentially sampled higher elevations,

whereas other morphological variables were adequately sampled by all teams.
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Figure 5: Frequency distribution of some morphological parameters for the sampled points compared to the whole basin (solid black

line).
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Figure 6: Frequency distribution of some morphological parameters for the sampled points compared to the whole basin (solid black

line) for teams 2-9.
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Figure 7: Frequency distribution of some morphological parameters for the sampled points compared to the whole basin (solid black

line) for teams 10-16.

SWE spatialization

The set of measurements taken by each team is here considered as an independent campaign.

Each of them was therefore used to produce a simulated SWE map. A global simulation was

also run, by including all measurements simultaneously, and this last estimate is considered as the

best approximation of the ground truth. Figure 8 shows total SWE calculated by summing the
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SWE contributed by each pixel for each of the 16 simulations. We also show the average of the

16 simulations in blue and the global simulation in black. The variability among simulations is

considerably high (up to 30% of the total, and on average 10%). By comparing simulations 2017

to those of the period 2012-2016, it appears that values in 2017 are considerably lower compared

to the previous years’ range. By looking at the totals in fig. 8 we can conclude that the average of

the 16 simulations nicely matches the estimation obtained by the global model.

Figure 8: SWE total estimated from the 16 independent simulations, their average (in blue) and the global simulation (in black). For

comparison, we show the simulation obtained in previous years.

12 Climate change unit



By looking at the average SWE map (the average of 16 maps, one for each simulation) we can

appreciate the distribution of SWE on the whole basin. Based on the standard deviation map, we

can notice that the highest variability is found in areas with a limited number of observations, as

expected. In contrast, the area between the two lakes, although with fewer observations, shows a

low variability.

Figure 9: Map of the average and standard deviation of SWE obtained from the 16 simulations.

The map in figure 10 is obtained from the global simulation. SWE distribution shows different

spatial patterns compared to the average of the 16 simulations shown in figure 9, even if it leads to

a total SWE on the basin comparable (cfr fig. 8).
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Figure 10: SWE map obtained by the global simulation (all observation feeding one single simulation).
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SWE spatial distribution

To highlight the spatial differences between different simulations, we calculated the anomaly between

each single observation and the global simulation map. Figure 11 shows that anomaly, with blue

colors indicating SWE values higher than the global, and red colors indicating the opposite. The

main differences are: 1) simulation 8 returns an area of NA values for a large area of the basin.

This normally happens when the model produces negative SWE values. 2) No single teams except

for simulation 14 display completely negative or positive anomalies. 3) A widespread condition

occurs, where single simulations provide overestimation for certain subareas and underestimation

for others.

By comparing the anomaly maps with the graph showing total basin SWE (fig. 8) we can observe

that the simulations that lead to a total SWE sensibly lower than the global or the mean simulation,

as for example for simulations 14, 15 and 16, these three show a negative anomaly in the south-east

area of the basin. Conversely, total SWE higher than the average (as for simulations 2 and 9) are

generally due to positive anomalies of the northern or south-western areas of the basin. In both

cases of negative and positive anomalies, they are located in areas with lower observations thus

indicating, as expected, that the lack of observations leads to higher uncertainty in SWE modeling.

15 Climate change unit



Figure 11: SWE anomaly for each simulation, obtained by subtracting to the actual simulation map the one obtained from the global

model.

Factors controlling SWE distribution

The relative importance of dem-derived factors controlling SWE is illustrated in figure 12. This

figure shows the variance explained by single predictors in the regression model used to spatialize

SWE. In other words, the chart shows how important is the relationship between point SWE and

morphological characteristics. The figure shows furthermore how often predictor category is chosen
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in the model. Solar radiation is certainly the most important parameter. It appears in all simula-

tions and explains between 20 and 60% of the variance. elevation is selected only few times (7 over

16 simulations), contrary to what we observe at larger scale, where there is a positive correlation

between snow amount and elevation. In small basins such as the Goillet other morphological proper-

ties associated to meso- and micro-topography overcome elevation in determining SWE distribution.

For example, the predictor category called protection, which includes the topographic attributes

that make a cell more or less prone to snow erosion or accumulation, plays an important role in

Goillet simulations, being chosen in all but one models and explaining 10-60% of the variance.

Figure 12: variance explained (%) by different categories of predictors in the multiple regression model.
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4 Conclusions

We found a significant variability among simulations based on sampling strategy of the different

teams. By analyzing the various paths chosen, we highlight the difficulty to sample the sectors

of the basin in a proper and homogeneous manner. Differences in snow depth measurements are

further amplified by the spatialization process. We stress the importance of a sound planning of

the field survey.

Moreover, some areas had limited access due to i) security reasons (highest part of the slopes

beneath Fürgen peak, northern slopes close to Gran Sommetta, glacial areas) or ii) logistic reasons

(the flat area between the two lakes). In these areas, fewer measurements lead to larger variability

betwen simulations: this is particularly true at the edge of the simulations (areas close to N and S

mountainsides).
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In a nutshell

• 93 SWE measurements conducted in the Bardonecchia Basin by profile sampling (horizontal
core) or vertical core sampling

• 65 snow observers involved, divided in 21 measurement teams

• Average basin SWE was quantified at 550 mm w. eq.

• Elevation and wind erosion explain 50% of the spatial variability in snow depth and SWE

• Solar radiation and aspect partially explain the spatial variability of snow density

• To maintain the average error in SWE estimation smaller than 20% no less that 71 and 23
measurements must be collected for snow depth and density, respectively. If our target is 10%,
required measurements increase to 85 and 53.
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1 Objectives 2018

Previous editions of SWE activities lead to the intercomparison between methods in homogeneous

(2015 and 2016) and heterogeneous conditions (2016), the assessment of the impact of snow depth

variability on the final estimation of SWE at the basin scale (2017). The current edition was or-

ganized again with the general objective to quantify the snow water equivalent at the basin

scale and specifically:

1) evaluate SWE spatial variability in a specific alpine basin and at a point in time and its rela-

tionship with morphological attributes (elevation, aspect, slope)

2) assess the relative importance of snow depth (HS) and density (RHO) in the determination of

basin-scale SWE

3) explore morphological attributes (elevation, aspect, slope, etc...) controlling variability in HS,

RHO and SWE

4) estimate the minimum number of RHO and HS samples required to obtain a sufficiently accurate

estimate of SWE (with an error lower than 20%).

2 The field work

The investigated area is the Bardonecchia Ski Area, alta Val di Susa (TO) (fig. 1). Sampling

points were chosen to be representative of topographic conditions of the whole basin with several

restrictions; access to the field was constrained by the skilifts (Colomion Spa); movements across

long distance had to be avoided; the security of all involved personnel had to be guaranteed. The

following classes of slope, aspect and elevation were considered (table 1).
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Figura 1: The study area

Tabella 1: Classes of elevaton, aspect and slope considered to distribute the sampling points

Elevation Aspect Slope

1300-1800 m North (>315◦, <45◦) <15 ◦

1800-2300 m East (45◦-135◦) 15◦-25◦

2300-2800 m South (135◦-225◦) >25◦

West (225◦-315◦)

By combining the various classes we obtained the distribution of topographical units of the whole

area, and their respective abundances, so that the most abundant classes could be adequately repre-
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sented by the sampling scheme. The final distribution of sampling points is shown in figure 2. Each

of the 21 teams was assigned between 3 and 6 points (depending on their distance/accessibility).

If for any reason the team could not reach a given point, we asked them to sample an extra point

with the same topographic characteristics as the one assigned. Data transmission was conducted

with smartphone (a picture of the filled sampling form).

Figura 2: Distribution of the sampling points

3 Base statistics of the parameters

Ninety-three points were sampled in the sub-areas of Jafferau, Colomion, Melezet, Col des Accles,

Bardonecchia, Melmise, Puys Beaulard. Points that were actually sampled roughly correspond to

the ones we assigned (fig. 3).
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Figura 3: Distribution of the points that were actually sampled.

Average values of snow depth (HS), snow density (RHO) and SWE are reported in table 4 and

fig. 5. Mean HS was 165 cm, mean RHO was 340 kg m−3 and mean SWE was 550 mm w. eq.. 2

points show very large values of snow depth and SWE, at 400 cm e 1500 mm, respectively. These

points will be discussed further. The elevation range sampled was between 1300 m and 2770 m.

Slopes varied between 0 and 43◦. Prevailing facing of the points is west, which is the most frequent

facing of the entire basin, with the other 3 facings with similar frequencies.
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Figura 4: Base statistics for HS, RHO, SWE and topography. Column named expo shows the number of points sampled for each facing

class, i.e. east, north, south and west, from the top.
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Figura 5: Boxplots for HS, RHO, SWE and topography. Black line is the median, boxes represent 25th and 75th percentiles, horizontal

whiskers represent minima and maxima in the absence of outliers, represented by points
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4 The relationship between topography and measured parameters.

The graph in Fig. 6 shows the relationship between measured parameters (HS, RHO and SWE)

and some topographic variables. Snow depth is mainly related to elevation. Points are furthermore

colored according to an erosion flag (blue = snow accumulation areas, red = snow erosion areas,

black = neutral to erosion). By including erosion in the linear model the variance explained increases

from 0.24 (with elevation only) to 0.5. Erosion and elevation together explain therefore 50% of the

variance of HS. Snow depth is weakly related to other topographic attributes. Snow density is

uncorrelated to slope and elevation but shows a correlation with facing. Warm slopes (facing south

and east), have higher snow density compared to north and west. This pattern is also confirmed by

the positive relationship between snow density and solar radiation. The relationship between SWE

and topography reflects the one found for HS, with usually lower R2.
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Figura 6: Relationship between measured parameters (HS, RHO, SWE) and selected topographic variables. Each panel reports the

r-squared pf a linear model. Blue points represent now accumulation areas, whereas red points indicate snow erosion areas. Black points

are neutral with respect to erosion. Radiation values are calculated as accumulated potential solar radiation since Jan, 1st to March,

19th, the sampling day).

In addition to the qualitative assessment of measured parameters and topography we seek a

quantitative approach in order to better understand which variables are more important in the

spatial distribution of SWE, RHO and HS. To this end we used the random forest technique, that

allows to rank variable importance. This technique is robust against outliers and autocorrelated

variables. Results are shown in fig. 7. Elevation explain most of the variance for HS, followed by

erosion. Radiation, slope and facing are of minor importance into the model. For snow density,
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the model performs worse than for HS. The most important variable is solar radiation, followed by

elevation, slope, facing and erosion. Variable ranking for SWE is the same as the one described for

HS.

Figura 7: Random forest: importance of the different variables. X values are proportional to the explained variance by the model. The

higher the contribution of a variable, the higher is its importance in the model.

Random forest analysis was conducted also on the dataset split in two elevation classes, above and

below 2000 m to examine whether different drivers regulate snow distribution at different elevation

belts. Results are shown in fig. 8. Variables controlling HS below 2000 m have the same ranking

as for the complete data set. At high elevation, erosion becomes the most important factor in HS

distribution. This is explained by the fact that erosion exerts its influence preferably at higher

elevations, close to the ridges where snow redistribution by winds is an effective process. For RHO,

radiation and facing are ranked at highest importance in the model, corroborating the hypotheses
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from the qualitative analysis (5).

Figura 8: Same as in fig. 7 split by elevation.
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5 Operational objective: the minimum number of required samples

The high number of measurements conducted in this comparison offers the possibility to run stati-

stical analyses otherwise not possible. In this case, with 93 points we can provide a robust estimate

of the mean SWE at the basin scale and consequently we can evaluate a minimum number of

measurements required to achieve a given target in accuracy. This analysis aims at minimizing

labor-intense and potentially dangerous field activities.

Because the most time-consuming measurement is snow density, especially with the horizontal sam-

pling technique, we would be particularly interested in reducing the number of RHO sampling.

The following analysis simulates a reduced sampling, where actual measurements are progressively

substituted by the average of the remaining samples. This exercise is run by either reducing HS

and RHO points, even though the first simulation is unlikely to occur in the reality (i.e. conducting

more RHO than HS measurements).

Figure 9 shows the results of the above mentioned analysis. Along the x axis from right to the left,

the number of samples is progressively reduced for RHO (red line) and HS (black line). Variability

(and error) increases with decreasing sampling number, but at markedly different rates for HS and

RHO, due to the much higher variability of HS compared to RHO.

In this case and at that moment of the season we estimate that with 71 and 23 measurements

for HS and RHO, respectively, we can estimate SWE with an average error of 20%; if we want to

reduce this error below 10% we should put a larger effort and increase samples number to 85 and

53 measurements for HS and RHO, respectively.
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Figura 9: The effect of sample removal on the error in the estimation of SWE at the Basin scale. The red line represents the reduction

of RHO measurements, keeping the complete number of HS measurements (the black line, the other way around). Dashed horizontal

lines represent two uncertainty (error) targets, at 20 and 10%. The correspondent vertical lines identify the number of samples required

to achieve those targets.
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6 Conclusions

• The conspicuous number of measurements (93) allowed to estimate an average basin SWE on

March 20th 2018 in Bardonecchia at 550 mm. This figure parallels the estimates across the

Alps in this very snowy year.

• Elevation and wind redistribution contribute substantially to SWE and HS spatial distribution,

whereas solar radiation (and facing) partly control the distribution of snow density.

• We estimated that to obtain an error in SWE estimation at the basin scale below an arbitrary

20% target, we need to collect a minimum of 71 and 23 samples for HS and RHO, respectively.
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