
 1 

 
 

Project of Strategic Interest NEXTDATA 
 

WP1.7 
 
 

D1.7.C – Ensemble di modelli empirici e deterministici  
per siti LTER specifici e per specie animali campione  

  
 
 

  
  
 

Antonello Provenzale (CNR IGG)  
Marta Magnani (CNR IGG) 

Simona Imperio (ISPRA) 
  
  
 
 
This Deliverable describes some of the deterministic (process-based) and empirical (data-driven) 
ecosystem and population dynamics models developed and/or implemented during the NextData 
project, tuned for application to the Gran Paradiso Long-Term Ecological Research Site. All models 
are available upon request to info@nextdataproject.it. 
 
 
 
  



 2 

 
1. Models for Alpine lake ecosystems  
(Antonello Provenzale, CNR IGG; Jost von Hardenberg, CNR ISAC) 
 
The model proposed here includes six compartments, describing the concentration of nutrients N 
(mainly phosphorus), two compartments of phytoplankton (P1 and P2), one zooplankton compartment 
(Z, mainly Daphnia), planktivorous fish (F), and piscivorous predator fish (C). For a general 
introduction to mathematical models in ecology see Kot (2001), for an introduction to lake ecology 
see Wentzel (2001) and for a discussion of phytoplankton ecology see Reynolds (2006). For NPZ 
models and their use in describing aquatic ecosystems see Bracco et al. (2000), Martin et al. (2002), 
Pasquero et al. (2005), Koszalka et al. (2007) and references therein.  
 
All variables are measured in terms of concentrations, i.e., mass per unit volume. The concentration 
of N is given in phosphorus content, while the plankton and fish compartments are measured in carbon 
content (or biomass, to be decided).  We then use the appropriate conversion factor in the form of 
fixed P:C (or P:biomass) ratio Q to convert from carbon (or biomass) to phosphorus. For simplicity, 
we assume Q to be the same for all organisms. Hereinafter, the subscript 1 and 2 refer to the two 
phytoplankton compartments, Z to the zooplankton and F and C to two compartments of fish. In the 
model, the nutrient is measured in µg-P/L, while phytoplankton, zooplankton and fish are measured 
in µg-C/L. Here P stands for Phosphorus and C for Carbon. 
 
We do not explicitly describe the dynamics of bacteria, protozoa, macroinvertebrates and amphibians. 
Bacterial concentration, in particular, is assumed not to limit remineralization and recycling, 
constituting a large pool which reacts rapidly to the availability of organic material. In this way, the 
role of bacteria is parameterized in the nutrient remineralization terms.  
 
The limiting nutrient is assumed to be phosphorus, as is typical for most freshwater ecosystems. We 
expect phosphorus to be either organic and contained in living plankton cells, included in the detritus, 
or available as dissolved or colloidal organic phosphorus. 
 
Another important limiting factor is light intensity, I, which is assumed to vary seasonally and also 
to be affected by the presence of high phytoplankton concentrations which can shadow the lower 
water layers. 
 
We first consider the case of one vertically homogeneous lake water layer (such as happens for a fully 
mixed shallow lake, for example the Upper Trebecchi Lake at Gran Paradiso). 
 
We denote by g1, g2, gZ, gF and gC the growth efficiencies of the respective kinds of plankton and fish, 
i.e. the fraction of ingested food (or nutrient, for phytoplankton) used for biomass growth and 
reproduction. The fractions 1-g are instead used for metabolism. The parameters m1, m2, mZ and mF 
denote linear mortality rates of phytoplantkton, zooplankton and planktivorous fish respectively, and 
are assumed to be constant. Planktivorous fish is assumed to feed on zooplankton and to be subject 
to linear mortality. Piscivorous fish feed on planktivorous fish and are affected by quadratic mortality, 
representing also the feeding of carnivorous fish on its same compartment. 
 
Nutrient 
 
The dynamics of nutrient concentration is described by 
 

                                                   (1.1) 

dN
dt

= −V1F1 N, I( ) QP1 −V2F2 N, I( )QP2 +Qρ +Φ
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where N denotes the concentration of bioavailable phosphorus, i.e. orthophosphate and other forms 
of organic or inorganic phosphorus that may be immediately utilized, and I is light intensity. The 
Liebig functions Fi(N,I) are given below. The first term on the right-hand side of this equation 
describes phosphorus uptake and the parameters V1 and V2 are the maximal nutrient uptake rates by 
phytoplankton.  
 
The carbon content of P1 and P2 is multiplied by the molar P:C ratio Q of phytoplankton, to obtain 
the phosphorus contained therein. Stoichiometric ratios in lakes do not generally obey Redfield ratios, 
and can differ between different species/groups (e.g., Andersen and Hessen 1991, Touratier et al. 
2001, Vrede et al 2002, Reynolds 2006). For simplicity, here we assume a fixed P:C ratio of 1/100. 
Experimentation with different values do not lead to relevant variations in the results, especially 
because the regeneration terms play a very limited role in the high-nutrient conditions of the lakes 
considered here. 
 
The term r indicates the remineralization rate of the organic phosphorus, implicitly representing the 
activity of bacteria.  Phosphorus in the ecosystem comes from rapid recycling in the water column, 
in the form of release from plankton (secretion and waste during the growth process), and from rapid 
remineralization of dead organic matter in the water column (part of which is lost to the sediment). 
The term r is given explicitly in equation (1.9) discussed below. In the model, this contribution is 
added instantaneously to the P pool. 
 
The parameter F is the external influx of soluble phosphorus, by rainfall, runoff or bottom 
resuspension. It can be a constant flux of nutrient, independent of the nutrient level inside the system, 
or a relaxation term (chemostat model) of the kind 
 

                                                                     
 
where N0 is the nutrient level in the chemostat and 1/t is the relaxation rate. 
  
 
Phytoplankton 
 
The model adopted here is developed for considering two different phytoplankton compartments, 
distinguished for example by their size (dinoflagellates versus diatoms) or by their nutrient uptake 
variability, or by their response to light. As discussed in the following, in general only one 
compartment of phytoplankton survives in the homogeneous model. However, we keep two 
compartments to allow for future explorations of very different conditions.  
 
The equations for phytoplankton dynamics are 
 

                                                   (1.2) 

                                                 (1.3) 
 
where P1 and P2 are the phytoplankton concentrations. In equations (1.2,1.3), the first term 
corresponds to growth of phytoplankton by nutrient uptake, the second term to loss of phytoplankton 

Φ = −
N − N0

τ

dP1
dt

= g1V1F1 N, I( ) P1 − rZ G(P1,P2 )
αP1

αP1 + 1−α( )P2
Z −m1P1

dP2
dt

= g2V2F2 N, I( ) P2 − rZ G(P1,P2 )
1−α( )P2

αP1 + 1−α( )P2
Z −m2P2
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due to consumption by zooplankton. The third term represents linear phytoplankton mortality, which 
includes both natural mortality and the sinking of phytoplankton cells out of the water column. 
 
The parameters V1 and V2 are the maximal nutrient uptake rates of phytoplankton. The parameter rZ 
is the maximal grazing rate of zooplankton.  
 
The functions F1, F2 are Liebig functions defined as 
 

                                                          (1.4) 
 
The parameters ki and li are the half-saturation constants for nutrient and light respectively. The two 
phytoplankton compartments may respond to lack of nutrient and/or light in different ways (i.e., have 
different values for ki and li ). 
 
The parameter a represents the preference of zooplankton for the P1 phytoplankton compartment and 
it depends on phytoplankton size and ability to form colonies and on general phytoplankton 
palatability. If zooplankton does not consume P1, then a =0. If zooplankton does not consume P2, 
then a =1.  
  
The function G(P1,P2) is a generalization of the Holling type-III functional form for predation over 
two compartments and it can be written as 
 

                                                                     (1.5) 
 
 
Zooplankton 
 
 The dynamical equation for zooplankton is 
 

                                                              (1.6) 
 
where the first term on the r.h.s. is zooplankton grazing on phytoplankton, the second term represents 
a Holling type-III predation of zooplankton by planktivorous fish (see Kot 2001 for an introduction 
to predation functional types and Sarnelle and Wilson 2008 for the case of Daphnia) and the third 
term is linear zooplankton mortality. The parameter rZ is the maximal grazing rate of zooplankton and 
the function G has been defined in eq. (1.5). The parameter rF is the maximal grazing rate of fish on 
zooplankton and � is the saturation constant in the Holling type-III functional form. 
 
 
Planktivorous fish 
 
We assume that planktivorous fish feed on zooplankton. The dynamical equation for planktivorous 
fish is 
 

Fi N, I( ) =min N
κ i + N

, I
λi + I

!
"
#

$
%
&
, i =1,2.

G(P1,P2 ) =
αP1 + 1−α( )P2"# $%

2

ε 2 + αP1 + 1−α( )P2"# $%
2

dZ
dt

= gZrZ G(P1,P2 )Z − rF
Z 2

η2 + Z 2
F −mZZ
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                                                     (1.7) 
 
where the first term represents fish grazing on zooplankton, the second term is planktivorous fish 
predation by piscivorous fish and the third term is linear mortality. The parameter rF is the maximal 
grazing rate of zooplankton by planktivorous fish and rC is the maximal grazing rate of piscivorous 
fish, again using a Holling type-III functional form. 
 
 
Piscivorous fish 
 
The dynamical equation for the piscivorous fish compartment is 
 

                                                                   (1.8) 
 
where the first term is the growth of piscivorous fish by grazing on planktivorous fish and the second 
term is quadratic mortality, which includes a parametrization of piscivorous fish predation on its same 
compartment and mathematically allows for a finite value of piscivorous fish at equilibrium. The 
parameter rC is the maximal grazing rate of planktivorous fish by piscivorous fish and dC is the 
quadratic mortality parameter (having different units with respect to the linear mortality rates). See 
Steele and Henderson (1992) for a discussion of quadratic mortality. 
 
 
Direct nutrient recycling 
 
The fraction of food that is not used for biomass growth enters the metabolism of the 
consumer/predator.  This biomass is then egested (i.e. respired, excreted, or secreted from the body 
surface). The phosphorus content of the egested biomass is assumed to be rapidly transformed into 
soluble, bioavailable phosphorus by the bacterial and enzymatic activity. This soluble reactive 
phosphorus is indicated by the term r and is added instantaneously to the nutrient compartment, see 
eq. (1.1). 
  
The term r, representing direct nutrient recycling, is expressed as 
 
 

 
 

                                                 
(1.9) 
 
      
 

 
 
where 1-g1 , 1-g2 , 1-gZ , 1-gF and 1-gC indicate the fraction of resource/prey which is used for 
metabolism, 0 ≤ g ≤ 1 indicates the fraction of dead biomass which is remineralized in the water 
column before sinking into the bottom sediment and 0 ≤ g0 ≤ 1 indicates the fraction of excreta which 
are remineralized in the water column. 
 

dF
dt

= gFrF
Z 2

η2 + Z 2
F − rC

F 2

ω 2 +F 2 C −mFF

dC
dt

= gC rC
F 2

ω 2 +F 2 C − dCC
2

ρ = γ0 1− g1( )V1F1 N, I( ) P1 + 1− g2( )V2F2 N, I( ) P2"#

+ 1− gZ( )rZ G(P1,P2 )Z + 1− gF( )rF
Z 2

η2 + Z 2
F + 1− gC( )rC

F 2

ω 2 +F 2 C
$

%
&

+γ m1P1 +m2P2 +mFF + dCC
2"# $%
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Temperature dependence 
 
Some of the parameters depends on temperature. For now, we consider only the temperature 
dependence of the phytoplankton growth rate, and use either a linear or a nonlinear form of 
temperature dependence, expressed as 
 

      (1.10) 
 
Where Tmax is the maximum temperature attained by the system for the linear case and � is the hald-
saturation constant for the nonlinear dependence. Previous results indicate the appropriateness of the 
nonlinear form (Thébault and Rabouille 2003). 
 
 
Seasonal dependence 
 
Light intensity and temperature are seasonally dependent. For light, we make the hypothesis that   
 

     (1.11) 
 
so that light has a minimum I0 on Dec 31 and a maximum Imax on June 30, with the agreement that the 
time t in days is t =1 on Jan 1st of the first year of the simulation. 
 
Temperature is expressed by a similar function, 
 

    (1.12) 
 

where d is a time delay due to the fact that seasonal temperature variation lags seasonal light intensity 
variation. In this way, temperature has an annual minimum on day d. 
 
Notice that, in the current formulation of the model, we consider only seasonal variation and do not 
take into account the daily or inter-annual variations in temperature, light intensity (cloudiness), 
nutrient influx or wind conditions (associated with mixing). For this reason, the comparison between 
model outputs and observations described in the following chapters should be taken as purely 
qualitative. 
 
A simplified version of the above model, with fixed light intensity and valid only for the (ice-free) 
summers, was used to model the impact of introduced fish species (notably, the brook trout Salvelinus 
fontinalis) in the high-altitude lakes monitored in Gran Paradiso National Park (Magnea et al. 2013). 
Table 1 reports, as an example, the parameter values adopted for the highly-oligotrophic Alpine lakes 
of Gran Paradiso. 
 

Vi =Vi,0 T /Tmax linear

Vi =Vi,0 T / θ +T( ) nonlinear

I = I0 + Imax − I0( ) 1− cos 2π t / 365( )"# $% / 2

T = T0 + Tmax −T0( ) 1− cos 2π (t −δ) / 365( )"# $% / 2
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Table 1. Model parameters and their values for Gran Paradiso lakes. GE, growth efficiency; GR, 
growth rate; HS, half saturation constant; MR, mortality rate; P, phytoplankton; N, Phosphorus; F, 
fish. From Magnea et al (2013). 
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Stratified lakes 
 
In case of a stratified lake, we consider a model system composed of two vertical layers, one above 
the thermocline (epilimnion) and one below (hypolimnion). The upper layer is characterized by 
abundant light while the lower layer is characterized by darker conditions. 
 
Nutrient is supposed to enter the upper layer through a given external flux associated with the input 
of water streams and precipitation and leave the upper layer by a flux associated to water flow out of 
the lake. In this simplified formulation, we assume a given input flux F0, independent of the nutrient 
concentration in the lake, and an output flux that depends linearly on the nutrient concentration in the 
lake, -bN. This choice relies on the assumption that there is an independent nutrient source from the 
water input, and a fixed water volume leaving the upper layer of the lake; thus, the loss of nutrient is 
proportional to the nutrient concentration N. 
 
From the bottom, there is a nutrient input in the lower layer due to decomposition of organic material 
in the sediment and nutrient release from the chemostat represented by the nutrient-rich bottom 
sediment. This is obtained by using a relaxation term of the form F= - (N-N0)/t where N0 is the 
nutrient reservoir in the bottom. 
 
There is an additional nutrient mixing term between the two layers, expressed as µ (N2-N1) for the 
upper layer and µ (N1-N2) for the lower layer, associated with turbulent exchanges between the two 
layers. Mixing is assumed to vary seasonally, from a maximum µ0 in winter to a minimum in summer. 
For simplicity, we assume that the mixing intensity varies sinusoidally with time, with a delay d1 with 
respect to the temperature variation. 
 
We assume that the excreta produced by the metabolism and the dead organic material sink to the 
bottom. There, it will participate in the nutrient reservoir of the bottom which re-enters the lower 
layer by the relaxation term. 
 
Phytoplankton is split into two populations, P1 and P2, living respectively in the upper and lower layer. 
The parameters of the two populations are the same, but the temperature and the light level of the two 
layers are different. One can also include a mixing term between the two populations, i.e. a coupling 
term of the form µP (P2-P1) for the upper layer and µP (P1-P2) for the lower layer, due to turbulent 
mixing and/or phytoplankton vertical movements between the two layers. Here we assume that only 
turbulent mixing is active, and thus µP = µ. 
 
Zooplankton are supposed to be able to freely move between the two layers and to feed on 
phytoplankton, wherever they are. Although visual predators may have a preference for the upper 
layer where light is more abundant and there is a diurnal cycle of zooplankton predation, we shall 
ignore these effects here. Consequently, only one compartment of zooplankton is kept in the model. 
Analogous behavior is assumed for fish. 
 
The two-layer model has seven compartments, namely nutrient and phytoplankton in the upper and 
lower layer, zooplanton, planktivorous fish, and piscivorous fish. The equations are written as: 
Zooplankton are supposed to be able to freely move between the two layers and to feed on 
phytoplankton, wherever they are. Although visual predators may have a preference for the upper 
layer where light is more abundant and there is a diurnal cycle of zooplankton predation, we shall 
ignore these effects here. Consequently, only one compartment of zooplankton is kept in the model. 
Analogous behavior is assumed for fish. 
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The two-layer model has seven compartments, namely nutrient and phytoplankton in the upper and 
lower layer, zooplanton, planktivorous fish, and piscivorous fish. The equations are written as: 
 
 

                                        (1.13) 
 

                                      (1.14) 
 

                                (1.15) 
 

                             (1.16) 
 

                                                   (1.17) 
 

                                                   (1.18) 
 

                                                                 (1.19) 
 
 
where the indices i=1,2 refer to the populations respectively in the upper and lower layer,  
 
 

   ,                                             (1.20) 
 

     ,                                                              (1.21) 
 

      (1.22) 
 
and T1, T2, I1 and I2 are respectively the temperature in the upper and lower layer and the light intensity 
in the upper and lower layer. For simplicity, we assume I2=x I1  where x =exp(-H/D), H is related to 
the depth of the epilimnion and D is related to the extinction depth of light penetration. The seasonal 
variation of light intensity, temperature and mixing rate are written as 
 
 
 

dN1
dt

= −V T1( )F N1, I1( ) QP1 +Φ0 −βN1 −µ N1 − N2( )

dN2

dt
= −V T2( )F N2, I2( ) QP2 −µ N2 − N1( )− N2 − N0

τ

dP1
dt

= gV T1( )F N1, I1( ) P1 − rZ G(P1,P2 )
P1

P1 +P2
Z −mP1 −µ P1 −P2( )

dP2
dt

= gV T2( )F N2, I2( ) P2 − rZ G(P1,P2 )
P2

P1 +P2
Z −mP2 −µ P2 −P1( )

dZ
dt

= gZrZ G(P1,P2 )Z − rF
Z 2

η2 + Z 2
F −mZZ

dF
dt

= gFrF
Z 2

η2 + Z 2
F − rC

F 2

ω 2 +F 2 C −mFF

dC
dt

= gC rC
F 2

ω 2 +F 2 C − dCC
2

F Ni, Ii( ) =min Ni

κ + Ni

, Ii
λ + Ii

!
"
#

$
%
&
, i =1,2

G(P1,P2 ) =
P1 +P2[ ] 2

4ε 2 + P1 +P2[ ] 2

V (T ) =V0 T / θ +T( )
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   (1.23) 
 

   (1.24) 
 

    (1.25) 
 
The above models are written in Fortran and are available upon request.  
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2. A conceptual model for the mountain Critical Zone 
(Marta Magnani, CNR IGG; Antonello Provenzale, CNR IGG) 

The Earth Critical Zone (CZ) is a relatively recent entry in the scientific landscape (see e.g. Giardino 
and Houser, 2015 for a detailed review). The term appeared for the first time in 1998 in an abstract 
by Ashley Gail (Ashley 1998), but only in 2001 a strict definition was proposed by the US NRC. The 
CZ is “[…] the heterogeneous, near surface environment in which complex interactions involving 
rocks, soil, water, air and living organisms regulate the natural habitat and determine the availability 
of life sustaining resources.” (NRC Committee, 2001). The structure and processes that characterize 
the CZ influence the storage and fluxes of water, solute, gas, sediments, biota and energy providing 
an ecosystem service that is critical to life. According to the definition proposed above, the domain 
of CZ science extends from the top of the vegetation canopy down to the unperturbed bedrock, 
involving a broad range of disciplines and implying variable processes in spatial and temporal 
extension. The model we are going to present is embedded in the CZ framework; focusing on the 
water and vegetation roles in particular. 
 
Water is the natural link between all the components involved: it travels from the atmosphere, through 
biota, to surface and deep soil; being a key component in soil weathering and sustenance of 
ecosystems. Moreover, in mountain areas the availability of water and the snow cover are the main 
limiting factors to biota development. They strictly control the plants growing cycle, and affect the 
gas exchanges with atmosphere as well as the whole trophic web (Jacobson et al., 2004, Portier et al. 
1998). Then, the simplest conceptual model of the mountain CZ should account of the coupled water-
vegetation dynamics, at least in the upper soil layer.   
 
Here, we discuss the implementation of a coupled eco-hydrological box model for the local soil 
moisture and vegetation cover. In the following 𝑠 will be the relative soil moisture, or just soil 
moisture averaged over a soil layer of depth 𝑍# and 𝑏 the fraction of ground surface covered by 
vegetation. We will use an implicit-space description of the soil surface. The domain of the simulation 
is subdivided into neighboring sites which can be vegetated or empty. The total density of sites is set 
to 1 as well as the maximal soil moisture, thus the two simulated variables provide a fractional 
information (i.e. 𝑏 ∈ [0,1]	and	𝑠 ∈ [0,1] ).  
 
During the winter season, mountain areas are often covered by a (possibly rather thick) coat of snow. 
Under the snow the plant metabolic rates are significantly slowed down. On the other hand, (solid) 
precipitation accumulate on the top of the snow cover preventing liquid water from infiltration into 
the soil. Theoretically, the dynamics of vegetation and soil moisture is “frozen” during winter periods 
and the model reproduces such feature by maintaining 𝑏	and	𝑠 constant in winter. In this framework 
we neglect the contribution of the snowmelt to the infiltration (Zeinivand and De Smedt, 2009). Such 
assumption becomes even more solid when one studies the convergence time of the variables. Indeed, 
the vegetation varies on longer time scales and perturbations of the initial value 𝑏(𝑡 = 0) take more 
than two decades to converge. The faster dynamics of the soil moisture make this variable to converge 
in tens of days.  
 
The model described here below has been used in a preliminary study of the CZ Observatory 
established in 2017 at Nivolet Plain (CZO@Nivolet) in the Gran Paradiso National Park, Western 
Italian Alps. The daily precipitation (from 1962 onwards) recorded at a neighboring meteorological 
site was used as input. The model alternates growing seasons and frozen periods in which the soil is 
respectively free or covered with snow, reproducing the succession of summer and winter seasons. 
The numerical results were compared with in situ measurements of soil moisture, in order to analyze 
the water storage in soils with different geological origin. Note that the generality of the model 
allowed the application to quite dissimilar environments in past works. An example is the study of 
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rainfall intermittency in arid lands presented by Baudena et al. in 2007. The model is written in 
Fortran 90 and it is available upon request. 
 
Soil moisture 
 
In this section we introduce the box-model for the total water content averaged over a given, active 
soil depth, i.e. the root zone 𝑍#. The model is suitable for application at local scale where the variable 
𝑠 has to be considered as the ratio between the number of soil pores filled by water and the total 
amount of pores within a reference volume. The vertical structure and the propagation of the wetting 
front are not included, i.e. the soil property and the soil moisture are considered to be uniform over 
the root zone.  
 
At daily time scale the dynamics of the soil moisture consists in the global water balance between the 
water input due to rainfall, and subsequent infiltration, and the water losses due to evapotranspiration 
from vegetated soil, evaporation from bare soil and deep percolation, referred as leakage in the 
following (Laio et al, 2001). Thus one can write 
 
 
 

34
35
= 	 6

789
	[𝐼(𝑠, 𝑟) − 𝑋(𝑠, 𝑏)] , 

 

(2.1) 
 

 
where 𝑍# is the depth of the roots zone in millimeters (mm), 𝑛 is the soil porosity, 𝐼(𝑠, 𝑟) the 
infiltration rate, with 𝑟 the daily rainfall, and 𝑋(𝑠) the total water. Both infiltration and losses and 
daily rainfall units are millimeter of water per day (mm/day). Thus, from (2.1) one finds out that d𝑡 
is measured in days.  
 
In reality, evaporation (and evapotranspiration) are maintained as long as the specific humidity of 
soil (and plants) is larger than the air surface specific humidity (Williamson et al., 2006). During 
precipitation events the atmosphere is close to the saturation point and these processes are strongly 
weakened or stopped. Since we do not explicitly simulate the air moisture, we will assume 
infiltration and losses as mutually exclusive processes: infiltration is present only during those days 
when the daily cumulative precipitation is non-null while the losses are neglected and vice versa. 
The last assumption allowed us to solve eq. (2.1) alternatively for infiltration and losses with 
different methods: the first with a Eulerian integration of time step 𝑑𝑡/2 and the second with a 
second order Runge-Kutta (RK2). The choice of the Eulerian step is dictated by the fact that eq. 
(2.1) is coupled with the equation for vegetation dynamics, described in the following, that is solved 
with RK2 methods and the last need the value of soil water at the half step (see e.g. Press et al, 1996 
and reference therein). As an example, in the CZO@Nivolet study we employed a time step of 1 
hour, corresponding to 𝑑𝑡 = 6

BC
𝑑𝑎𝑦. There, we directly measure the Volumetric Water Content 

(VWC) of different soils, that is 𝑉𝑊𝐶 = 𝑠	𝑛 (Rodriguez_Iturbe and Portporato, 2005); once known 
the soil porosity one can easily convert the numerical results for the comparison with data.   
 
Evaporation, evapotranspiration and leakage  
 
Eq. (2.1) is an Ordinary Differential Equation (ODE) that hides non-linearity in the term of water 
losses. The explicit expression for the total loss reads (Laio et al, 2001) 
 
 𝑋(𝑠, 𝑏) = 𝑏	[𝐸𝑇(𝑠) + 𝐿(𝑠)] + (1 − 𝑏)[𝐸(𝑠) + 𝐿(𝑠)], (2.2) 

 
where the vegetation and soil moisture dependences factorize through the functions of 
evapotranspiration (ET), evaporation (E) and leakage (L). The water loss from the vegetated sites is 
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given by 𝐸𝑇(𝑠) + 𝐿(𝑠) and its contribution to the total loss is weighted by the fraction of vegetated 
sites, 𝑏. The bare soil can lose water by evaporation and leakage, 𝐸(𝑠) + 𝐿(𝑠), and only the non-
vegetated sites, whose fraction is 1 − 𝑏, contribute. All the three functions in (2.2) are piecewise 
defined functions and depend on moisture thresholds. These are 
 
 

𝐸𝑇(𝑠) =

⎩
⎪
⎨

⎪
⎧
0																																												 			if	𝑠 ≤ 𝑠T											

𝐸U 	
𝑠 − 𝑠T
𝑠U − 𝑠T

																												 			if	𝑠T < 𝑠 ≤ 𝑠U

𝐸U + (𝐸WXY − 𝐸U)
𝑠 − 𝑠U
𝑠∗ − 𝑠U

					if	𝑠[ < 𝑠 ≤ 𝑠∗

𝐸WXY																																								 					if	𝑠∗ < 𝑠 ≤ 1			

				 

 
									 

 
 
 

(2.3) 
 
 
 

 

𝐸(𝑠) =

⎩
⎪
⎨

⎪
⎧
0																																													 			if	𝑠 ≤ 𝑠T											

𝐸U 	
𝑠 − 𝑠T
𝑠U − 𝑠T

																												 			if	𝑠T < 𝑠 ≤ 𝑠\]

𝐸U 	
𝑠\] − 𝑠T
𝑠U − 𝑠T

																												 		if	𝑠\] < 𝑠 ≤ 1

				 

 
 

(2.4) 
 
 
 

 

𝐿(𝑠) = ^
0																																	 																	if	𝑠 ≤ 𝑠\]											

𝐾4 	
	𝑒ab4c4def − 1
𝑒ab6c4def − 1

						 						if	𝑠 > 𝑠\]	
				 

 
(2.5) 

 
 

  
For typical values of the parameter 	𝐸WXY	, 𝐸U	, 𝐾4	, 𝛽	and soil moisture thresholds 𝑠T	, 𝑠U	, 𝑠∗, 𝑠\]	we 
refer to Table 2. A detailed derivation of the parameters for different textures can be found e.g. in 
Rodriguez-Iturbe and Porporato, 2005 and references therein.   
 
In a given habitat, a constant transpiration rate 𝐸WXY	occurs at optimal conditions (𝑠 ≥ 𝑠∗). Below the 
critical value of 𝑠∗, plants start (linearly) reducing transpiration by closing their stomata. If the soil 
moisture drops further, below the wilting point 𝑠U, the water stress forces the plants to completely 
close their stomata and progressively wilt. Only evaporation contributes to water depletion below this 
threshold. Here, the value of evaporation at the wilting point is marked as 𝐸U. Finally, the model 
assumes that below the hygroscopic point no evaporation takes place. Thus, the value 𝑠 = 0 is never 
actually achieved in the model. Ideally, below 𝑠T the soil skin moisture is so low that it acts as a seal 
for the underlying water, then the average moisture is always non-null (𝑠 > 0).   
 
Evaporation from bare soil follows simpler dynamics, since it increases linearly from the hygroscopic 
point up to its maximal value at the field capacity, 𝑠\]. Below the wilting point the dynamics of bare 
and vegetated soil should match, as evapotranspiration reduces to pure evaporation. This condition 
justifies the presence of 𝑠U and 𝐸U in (2.4). However, above the wilting point the magnitude of 
evaporation is always lower than the evapotranspiration one, tending to the same limit when s goes 
to 1, where leakage dominates.  
 
Leakage is the water percolation toward larger depth due to the action of the gravitational force on 
the liquid water and it is usually negligible except when the soil moisture exceeds the field capacity. 
In (2.5) such process is modeled by an exponential function that tends to the saturated hydraulic 
conductivity 𝐾4 as 𝑠 → 1.	 
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Note that, since 𝑋(𝑠, 𝑏) is the rate of moisture depletion of soil within the time step 𝑑𝑡, its dependence 
on the soil moisture results as a negative feedback. Higher soil moisture corresponds to larger water 
losses by evaporation and transpiration, that results in a stronger decrease of the soil moisture itself.  
 
 

 n 𝑠T 𝑠U 𝑠∗ 𝑠\] 𝐾4	 
(𝑚𝑚/𝑑) 

𝛽 

Sand 0.35  0.08   0.11   0.33   0.35   2000   12.1 
Loamy sand 0.42 0.08 0.11 0.31 0.52 1000 12.7 
Loam 0.45 0.19 0.24 0.57 0.65 200 14.8 
Clay 0.50 0.47 0.52 0.78 0.99 90 26.8 

 
Table 2. Examples of model parameter for different soil textures. The maximal value of 
evapotranspiration and evaporation at the wilting point are texture independent, i.e. 𝐸WXY =
4.5	𝑚𝑚/𝑑 and 𝐸U = 0.1	𝑚𝑚/𝑑  respectively. 
 
Infiltration  
 
The infiltration rate at the top layer of soil is directly determined by the rainfall rate. Here the 
cumulative daily precipitation is assumed to be uniformly distributed over the whole day. In each 
time step the amount of rainfall given by 𝑟𝛥𝑡	infiltrates as follows (Laio et al, 2001) 
 
 

𝐼 = 	p

𝑟
𝑛𝑍𝑟 											if	

𝑟𝛥𝑡
𝑛𝑍𝑟 < 1 − 𝑠		

1 − 𝑠
𝛥𝑡 									if	

𝑟𝛥𝑡
𝑛𝑍𝑟 	≥ 1 − 𝑠			.

		 

 
 

(2.6) 
 

 
All the rainfall infiltrates as long as the soil is unsaturated. When this condition is not satisfied, the 
soil saturates and the water in excess is lost as surface runoff. Here, we assumed statistical 
homogeneity of rainfall in the domain of simulation and rapid water redistribution by surface runoff. 
As discussed above, we choose  𝑟𝛥𝑡 = 𝑑𝑡/2 due to the coupling with the vegetation dynamics, that 
is solved with a second order RK2 method. 
 
Vegetation cover 
 
The dynamics of vegetation is described by a logistic equation (Levins, 1969), which was used to 
describe plant competition by Tillman (1994). In this approach, the fraction of occupied sites is 
determined by the colonization ability of plants and their mortality. Averaging the single parcel 
process over the whole domain one obtains the evolution equation for the fraction of occupied sites, 
i.e. the fraction of vegetation cover 𝑏, that is  
 
 d𝑏

d𝑡 = g(s)		𝑏(1 − 𝑏) − 𝜇(𝑠)𝑏	, 
 

 

(2.7) 

 
with 
 𝑔(𝑠) = uv

B
 [1 + tanh (	4c4∗

X
	)] 

 

(2.8) 

 𝜇(𝑠) = wx+wy
B

 + 
wx−wy
B

  tanh (	4zc4
X

 ) . (2.9) 
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Here, g(s)	is the colonization rate and 𝜇(𝑠) the extinction rate at local scale, in 𝑑c6. They both depend 
on soil water thorough a steep hyperbolic tangent, whose steepness is given by the parameter 𝑎=0.002.  
 
In (2.8) the hyperbolic tangent is centered on s*, the fully-open-stomata threshold of soil moisture. 
The colonization rate is assumed to be negligible, i.e. close to zero, when 𝑠 < 𝑠 ∗, while it tends to 
the optimal colonization rate 𝑔{ = 0.8	yc6  above this threshold. Thus, we coarsely model the scarce 
ability of plants to reproduce when the available water is lower than the optimal value, both because 
the water stress forces the plants to allocate fewer resources to seed production, and because seeds 
have lower germination probability when the soil is not sufficiently moist.  
 
The extinction rate, i.e. the vegetation mortality, reaches its maximum 𝜇6 = 0.2	yc6 below the wilting 
point and it is minimal, tending to 𝜇B = 0.1	yc6, above this threshold. The dependence on soil 
moisture is given by a reversed hyperbolic tangent centered on the wilting point for vegetation, 𝑠U.  
 
The overall dynamics of equation (2.7) accounts for the plant abundance and the soil moisture, 
through 𝜇(𝑠) and 𝑔(𝑠). Indeed, the propagule production rate is given by the product 𝑔𝑏 and it is 
weighted by the number of available sites (1 − 𝑏). This means that the larger is the number of 
occupied sites, the higher is the seeds production and the probability of appearance of new beings. 
The seeds are assumed to be randomly and uniformly spread over the whole habitat. However, the 
spreading of plants cannot be unlimited. The growth saturates due to the factor (1 − 𝑏), since a new 
plant established in an already occupied site does not change the number of occupied sites. Plants can 
also die by themselves according to the second term in (2.7), and the probability that an occupied 
sites become vacant is proportional to the plant abundance. Note that in this model the competition 
between individuals for resources is not explicitly modeled, i.e. production and mortality rate are 
density-independent. However, a larger population corresponds to higher evapotranspiration rates 
and a quicker depletion of resources. In ideal conditions of ever ending and constant supplies, 𝑏 tends 
to an asymptotic value, that is directly determined by the maximal available water.  
 
The above model is particularly suitable for studies of rainfall intermittencies (Baudena et al. 2007, 
Baudena and Provenzale 2008) and was adopted to explain the vegetation-type latitudinal gradient 
with the mean annual rainfall (D’Onofrio et al. 2015) 
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3. Empirical population dynamics models  
(Antonello Provenzale, CNR IGG; Simona Imperio, ISPRA; Ramona Viterbi, PNGP) 
 
In the framework of the NextData project and based upon the expertise developed in the last twenty 
years, we have developed a suite of data-based empirical models for the population dynamics of 
selected species (mainly, ungulates and tetraonids), see for example Jacobson et al. (2004), Imperio 
et al. (2012, 2013), Mignatti et al. (2012), Viterbi et al. (2014). 
 
The models are built upon the knowledge of the time series of census counts of the total population, 
Nt, where N is the density (number in a selected area) of the individuals of the species considered (for 
example, number of chamois in the Gran Paradiso Park), and t indicates the year. In this application, 
we consider annual census counts (appropriate for species that reproduce once a year), and discrete 
time (that is, annual censuses). 
 
The general dependence of the population fluctuations is described by the expression 
 

Nt+1 = F(Nt, Nt-1, … , Ct, Ct-1, …, Nt Ct, …) ,    (3.1) 
 
where Ct represents a generic climate or environmental variable in year t. Examples are the average 
temperature, the summer precipitation, the winter snow cover, etc. 
 
In general, the problem is to determine the form of F and what are the variables that are significant 
to explain a large fraction of the variance of the population fluctuations. If there is significant 
dependence on the previous-year population density (Nt-1), one can speak of direct density 
dependence. If there is a significant dependence on the population density from the previous years 
(Nt-2 and before), one speaks of delayed density dependence. Same issue for the environmental 
variables: they can measure environmental conditions between the census of year t-1 and year t, or 
previous conditions that can have a delayed effect on the population. 
 
In case the age (or stage) structure of the population is known, the models can reproduce the number 
(or density) of individuals in a given age class. For the cases of Alpine ibex (Capra ibex) and chamois 
(Rupicapra rupicapra) at Gran Paradiso, we implemented a stage-structured model including the 
dynamics of newborns (K), yearlings (Y) and adult males and females (M and F respectively), thanks 
to the availability of the corresponding empirical data. In such case, the model equations can be 
written as 
 

Mt+1 = SM (Nt, Nt-1, … , Ct, Ct-1, …, Nt Ct, …) (Mt + Yt / 2)   (3.2) 
  

Ft+1 = SF (Nt, Nt-1, … , Ct, Ct-1, …, Nt Ct, …) (Ft + Yt / 2)   (3.3) 
 

Yt+1 = SK (Nt, Nt-1, … , Ct, Ct-1, …, Nt Ct, …) Kt    (3.4) 
 

Kt+1 = F (Nt, Nt-1, … , Ct, Ct-1, …, Nt Ct, …) Ft+1    (3.5) 
 

where SM, SF and SK are the survivals of adult males, females and of kids respectively, and F is the 
natality (number of newborns per survived female). In the above equations, we have assumed that the 
survival of yearling from their first to second year is the same as that of adults, and that there an equal 
gender balance in yearlings.  
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Also in this case the relevant issues are (a) to determine the functional form of the survivals and 
natality, either by a priori or a posteriori (data-based) considerations, and (b) to identify the significant 
explanatory variables. For these purposes, a variety of statistical methods are available, and have been 
implemented in the modelling system. 
 
In most approaches, we have implemented regression-based Generalized Linear Models, with the 
inclusion – when appropriate – of multiplicative terms such as Nt Ct or quadratic terms such as Ct 

2. 
Delayed density dependence has also been included and tested. In the case of Alpine fauna, the main 
control variables for the considered cases have been identified as average depth of the snow cover, 
duration of the snow cover, start and end date of the snow cover, and spring precipitation (for the case 
of black grouse, Tetrao tetrix). Overall, the cases considered confirmed the fundamental role played 
by snow cover in the population dynamics of mountain fauna. 
 
All models have been implemented in R language, Fortran and/or Matlab, and are available upon 
request. 
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