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1. Introduction

Global and regional climate model (GCMs and RCMs) provide output fields with resolutions (of the
order of 100 Km for climate models and down to typically at most 10K m for regional climate
models), which are frequently not suitable for several application studies. In particular fine-scale
precipitation fields down to 1km resolution may be required to estimate precipitation extremes in
mountain areas and in particular in the Alpine region, where frequently small basins need to be
considered for hydrological impact studies.

Various techniques exist to downscale large-scale rainfall fields such as those produced by GCMs and
RCMs to the high temporal and spatial resolutions required by local impact studies (see Maraun et
al. 2010 for a detailed review). In addition to dynamical downscaling techniques, which require
expensive dynamical simulations at small scales, statistical and stochastic downscaling techniques
have been proven to be particularly effective (Bordoy and Burlando, 2014). In particular stochastic
rainfall downscaling, a type of weather generator, uses information directly from the large-scale
precipitation to generate an ensemble of possible stochastic realizations of precipitation fields with
a realistic spatial and temporal correlation structure and preserving the large-scale properties of the
original field (Ferraris et al. 2003). Stochastic downscaling allows to create ensembles of downscaled
fields, permitting to gauge the uncertainties in the small scale precipitation fields. Among the
available methods, so-called full-field weather generators are generally based upon simple
autoregressive models, so-called meta-Gaussian models (Rebora et al. 2006a), or point process
models simulating individual rain cells (Rodriguez-lturbe et al. 1987, 1988), or spatio-temporal
implementation of multifractal cascade models (Lovejoy et al. 2006, Deidda 1999, 2000, Lovejoy et
al. 1985).

In this project we have used and further developed the Rainfall Downscaling by a Filtered
AutoRegressive Model (RainFARM) technique (Rebora et al., 2006a, 2006b), a metagaussian model
based on nonlinear filtering of the output of a linear autoregressive process, whose properties are
derived from the information available at the large scales. The RainFARM technique was originally
developed for the spatial and temporal downscaling of individual precipitation events on the time
scales typical of meteorological events (Rebora et al., 2006a, 2006b). Applications have included the
analysis of the sensitivity of a distributed hydrological model to the variability of the spatio-temporal
rainfall distribution (Gabellani et al., 2007), the estimation of the uncertainty in flood predictions
(Rebora et al., 2006a), the assessment of the main uncertainty sources in ensemble precipitation
forecasts (von Hardenberg et al., 2007), and the quantification of sampling errors for the verification
of meteorological forecasts against rain gauge observations (Brussolo et al., 2008). In 2014, in the
framework of the NextData project, the method was further adapted for downscaling of long climate
simulations, improving in particular the method by removing artefacts in pure spatial downscaling
(please see D’Onofrio et al. 2014 for a detailed description).

An important limitation of the D’Onofrio et al 2014 method is that it does not take into account
orographic effects at scales smaller than those resolved by the original precipitation field to
downscale. Orographic precipitation mechanisms, such as orographic lifting, play an important role
in determining patterns of small-scale precipitation in areas with complex orography (Roe 2005,
Smith 2006). As a result the fine-scale distribution of precipitation in the downscaled fields is not
conditioned on orography and in particular the long-term climatology at individual grid points may
differ significantly from observations. This may make the original downscaling method not suitable
for applications particularly in the Alpine region.



A recent improvement of the RainFARM method, developed in the framework of Nextdata and
described in detail in Terzago et al. 2018, allows to exploit an existing log-term fine-scale climatology
of precipitation to define appropriate weights to allow RainFARM to reproduce a realistic climatology
also at small scales. Such an improvement is of importance also in the framework of ecosystem
studies and modelling. Such an information on the fine-scale climatological distribution of
precipitation may often be available from other sources, such as gridded observational datasets
(such as the EURO4M dataset for the Greater Alpine Region) or from globally available estimates,
such as WorldCim (Hijmans et al. 2005, 2010). Also non-hydrostatic RCMs, when applied at very fine
scales (1-5 km resolution), can capture the main physical mechanisms for orographic precipitation
and may lead to a realistic spatial distribution of precipitation amounts on average, albeit often with
significant biases in amplitude (Kotlarski et al 2014).

In the following we describe in detail the recently improved RainFARM procedure adapted for areas
with complex topography (section 2). Section 3 describes a complementary simple method to
downscale temperatures over complex orography using environmental lapse-rates. Section 4
describes the open-source software implementation of these methods developed in the project and
the github repository with which it is distributed.

2. The RainFARM stochastic precipitation downscaling method with fine-scale weights for
complex orography

In the following we describe only the recent modifications applied to the D’Onofrio et al. 2014
version of the RainFARM procedure. We refer to that paper for a detailed description of the
adaptation of RainFARM for climate applications and to Rebora et al. 2006a for a detailed description
of the original procedure. The extension to take into account a fine-scale climatology described in
the following is explored in more detail in Terzago et al. 2018. That paper also contains a validation
of the modification, by applying the method in a perfect-case experiment and in a more realistic case
comparing E-OBS downscaled precipitation with a dense network of raingauge measurements in the
Swiss Alps.

The RainFARM method downscales a large-scale spatio-temporal precipitation field P(X,Y,t), which

is considered reliable at scales larger than a reliability scale L, (which often may coincide with the
spatial resolution of the field). In the following we will use large-caps coordinates (X,Y) to indicate
fields defined on a coarse grid and small-caps coordinates (x,y) to indicate fields on a fine grid.

From the large-scale field to downscale, the method generates a fine-scale field 7(,9,1) at a
desired fine-scale resolution by extrapolation of its large-scale power spectrum to the unresolved
smaller scales, using the same spectral slope in a log-log plot as the large-scale field, choosing
random Fourier phases at small scales and finally using an inverse Fourier transform to return to
physical space. Since this procedure by itself would create fields with an unrealistic, almost Gaussian,
amplitude distribution, a final nonlinear (exponential) transformation is applied to the resulting field
in physical space (von Hardenberg et al. 2003).

In the final step of the procedure, 7(,Y:1) is further adjusted to guarantee that when coarse-
grained (aggregated) at the large reliability scales, it reproduces exactly the original field to
downscale P(X,Yt):
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where the operator <'>Lo indicates aggregation (averaging) at scale L, . This aggregation can

r(x,y,t) =

consist either in simple averaging over boxes of side L, or it could consist in using a smooth

operator, such as averaging over a moving circular window with diameter L,:
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where (2 is the entire domain of interest and K(x—x',y—y'):@[Lon - (x—x')2 —(y—y')z] is a kernel
representing a circular homogeneous patch of diameter L, , with 6/../the Heaviside step function.
When the aggregation operator is applied to a large-scale field, the same approach is used, but the

field is considered constant over boxes of size L,, that is the value of a large scale field A(x,y) at a
fine-scale point (x,y) is considered to be that at the closest large-scale point A(X,Y), where (X,Y) is
the closest large-scale coordinate point. All cases discussed in this work use this smooth approach
for the aggregation operator in eq. (1).

We assume that a reference precipitation climatology field c(x,y) at fine spatial scales is available.
This could be obtained from long-term time averages of gridded observational datasets of
precipitation, radar or satellite observations or from numerical simulations with high-resolution
models. This reference climatology is used only to derive local weights used to modify the spatial
distribution of precipitation, but the absolute value of precipitation itself is not considered, so that
possible large-scale biases in the reference climatology are not introduced in the downscaling chain
and do not affect the results.

The spatial pattern of precipitation is translated into a map of weights that is used to correct the
spatial pattern of the downscaled precipitation fields as follows:

w(r,y) = c(z,y)/({c(@,y), (3)

that is, we divide each value c(x,y) by its local average at scale L,. Notice that the weights aggegated

at scale L, average to 1. When the spatial average of c(x,y) is 0 (as may happen in arid areas), the
weights are all set to 1. If a box-averaging is used for aggregation, the resulting weights field reflects

the average climatological distribution in space, inside each cell of size L, of the climatological
precipitation in the reference dataset. In case a smooth moving-window averaging is used for
aggregation this is true only in an averaged sense.

In general, if the climatology needs to be reproduced at a monthly time-scale, this method can be

applied separately for each month, computing separately monthly weights wi(x,y) from Eq. (3),

where cj(x,y) is the long-term monthly average of the original reference precipitation dataset for
month i, with i=1,..,12.

The weights are then applied to the fine-scale fields produced by the RainFARM procedure:
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Fig. 1: (a) Precipitation climatology (1980-2008) from high-resolution WRF simulations; (b) climatology of the WRF
fields upscaled to 64 km resolution; (c) climatology of the upscaled fields downscaled with the original RainFARM
procedure; (d) climatology of the upscaled fields downscaled with the modified RainFARM procedure. (Figure
adapted form Terzago et al. 2018)

generating a new field where precipitation is reduced or intensified according to the weights
obtained from the long-term climatology. As a last step, the final amplitude adjustment to conserve

average precipitation at scale L,, i.e. Eq. (1), is again applied to 7(z,y,1),

The resulting fine-scale field r(x,y,?) still coincides exactly with the large-scale field P(X,Y,t) when

both are aggregated at the confidence scale L,, but its long-term time averaged climatology will
reflect on average the small-scale spatial distribution of the reference dataset c(x,y).

Notice that the weights in Eq. (3) only use the local distribution of precipitation, but are not sensitive
to possible large-scale biases in the precipitation climatology.

The effectiveness of the procedure is demonstrated in fig. 1 for a “perfect-model” experiment case
(where we know what we should achieve). Panel 1a shows the long-term climatology over the
Western Alps from high-resolution (4 km) simulations with the WRF regional climate model, in the
period 1980-2008. The high-resolution daily WRF fields have been upscaled (aggregated by box-
averaging) to 64 km resolution and their climatological mean is shown in fig. 2b. Downscaling these
coarse-scale fields with the original RainFARM procedure provides daily fields with a long-term
climatology which is very different (and smoother) than the original fine-scale climatology (see fig.
1c). Using the new improved procedure recovers almost exactly the correct long-term climatology
(see fig. 1d).

The complete algorithm has been implemented into a software package in the Julia language
(https://julialang.org), including command-line tools to perform the downscaling and to compute
orographic weights, and a corresponding library of Julia functions, described in section 4.




3. Temperature downscaling

In order to downscale surface temperatures (daily minimum, daily maximum and instantaneous and
average values) we implemented a very simple method based on a correction of the coarse-scale
field using an environmental lapse rate (such as those tabled by Rolland et al. 2003 for the Alpine
Region).

In order to compute the correction, an available fine-scale orography is first smoothed by a
smoothing kernel operator as in eq. 2 with a chosen radius (half a large-scale grid spacing by default).
A prescribed lapse rate is multiplied with the anomaly of the fine-scale orography compared to this
smoothed version, to obtain a fine-scale temperature correction field. We add this correction to an
interpolated version of the large-scale temperature field obtained using a nearest-neighbour
approach, followed again by application of a smoothing kernel as in eq. 2 (we found this approach
to be more consistent and giving better results than using a linear interpolation scheme for
temperature).

Also this procedure has been implemented in the Julia language package described in section 4.

4. The RainFARM library and tools in Julia language

The procedures described in the previous sections have been implemented in the RainFARM.jl
package available in the github repository at https://github.com/jhardenberg/RainFARM.jl (von
Hardenberg 2018). The package is written in the open-source language Julia (https://julialang.org),
a new and powerful language which is open-source, extremely fast and easy to use, which allowed
to create a particularly efficient version of the RainFARM tool, capable of efficiently creating large
ensembles of downscaled stochastic fields. The package contains both a Julia library of functions
(fully documented at https://ihardenberg.github.io/RainFARM.jl/dev/) and a command-line
interface (CLI) with commands allowing to downscale precipitation and temperature and to compute
the weights necessary for orographic downscaling. In the following we report only on the available
CLI commands, while we refer to the full online documentation for the library functions.

The library is distributed with an open-source license (the Apache license), it has been widely tested,
and is currently still under continuous development. The package has been registered as an official
Julia package.




List of the main available CLI commands:

e rfarm.jl : Precipitation downscaling using RainFARM.
Creates NENS realizations, downscaling INFILE, increasing spatial resolution by a factor NF. The
slope is computed automatically unless specified. Weights can be created with rfweights. jl

Usage:
rfarm.jl [-s SLOPE] [-e NENS] [-n NF]
K

[-r REGION] [-w WEIGHTS] [-o OUTFILE]
[-v VARNAME] [-g] [-c] [-k KMI

r
MIN] [-h] infile

Positional arguments:
infile The input file to downscale

Optional arguments:

-s, --slope SLOPE spatial spectral slope (type: Float64, default: 0.0)

-e, --nens NENS number of ensemble members (type: Int64, default: 1)
-n, --nf NF subdivisions for downscaling (type: Int64, default: 2)
-r, -R, --region REGION Indices for region to cutout

imin/imax/jmin/jmax (default: "0/0/0/0")
-w, --weights, --weight WEIGHTS

Weights file (default: "")
-0, --outfile, --out OUTFILE

Output filename radix (default: "rainfarm")

-v, --varname VARNAME Input variable name (default: "")

-g, --global conserve precipitation over full domain

-Cc, --conv conserve precipitation using convolution

-k, --kmin KMIN Minimum wavenumber (type: Int64, default: 1)
-h, --help show this help message and exit

e rfweights.jl : Tool to create “orographic” weights for RainFARM downscaling starting from
an available fine-scale climatology.
Usage:
rfweights.jl [-n NF] [-w WEIGHTS] [-v VARNAME] [-p PASS2] [-i INWEIGHT]
[-c] [--version] [-h] orofile reffile

Positional arguments:
orofile The input file to use for orography
reffile A reference file (e.g. the file to downscale)

Optional arguments:
-n, --nf NF Subdivisions for downscaling (type: Int64, default: 2)
-w, -0, --weights, --weight, --outfile, --out WEIGHTS
Output weights filename (default:"weights.nc")

-v, --varname VARNAME Input variable name (in orofile) (default: "")

-p, --pass2 PASS2 Previous rainfarm output for 2-pass weighting (default: "")
-1, --inweight INWEIGHT Previous weights file to correct for 2-pass (default: "")

-Cc, --conv conserve precipitation using convolution

--version show version information and exit

-h, --help show this help message and exit



rfslope. jl : Estimate spatial spectral slopes for RainFARM downscaling

Usage:
rfslope.jl [-v VARNAME] [-o OUTFILE] [-k KMIN] [-h] infile

Positional arguments:
infile The input file to downscale

Optional arguments:

-v, --varname VARNAME Input variable name (default: "")

-0, --outfile, --out OUTFILE Output filename for spectrum (default: "")

-k, --kmin KMIN Minimum wavenumber (type: Int64, default: 1)
-h, --help show this help message and exit

rftemp.jl : Tool to perform downscaling of temperature fields using an environmental
lapse rate

Usage:
rftemp.jl [-r RADIUS] [-1 LAPSE] [-v VARNAME] [-b COORD COORD COORD COORD]
[-o OROCOARSE][--version] [-h] orofile infile outfile

Positional arguments:

orofile The input file to use for orography
infile The file to downscale
outfile The output file name

Optional arguments:

-r, --radius RADIUS Smoothing radius (in grid units) (type: Float64, default: 0.0)
-1, --lapse LAPSE Lapse rate [K/km] (type: Float64, default: 6.5)
-v, --varname VARNAME Input variable name (in orofile) (default: "")

-b, --coord, --box COORD COORD COORD COORD
Coordinates of box in which to downscale

[lonllon2 latl lat2]

(type: Float64, default: [7.0, 7.65, 45.35, 45.75])
-0, --orocoarse OROCOARSE Coarse orography of original data (default: "")
--version show version information and exit
-h, --help show this help message and exit
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